دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [189, 1 ed.]
نویسندگان: Jay Gopalakrishnan
سری: Neuromethods
ISBN (شابک) : 9781071627204, 9781071627198
ناشر: Humana
سال نشر: 2022
تعداد صفحات: 237
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 47 Mb
در صورت تبدیل فایل کتاب Brain Organoid Research به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحقیقات ارگانوئیدی مغز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد چندین روش و رویکردهای مورد استفاده برای تولید
مغز انسان و ارگانوئیدهای عصبی شبکیه را بررسی می کند تا به
سؤالات اساسی در تحقیقات مغز انسان پاسخ دهد. فصلهای این کتاب
موضوعاتی مانند ارگانوئیدهای مغزی خودسازمانده با بطنهای قابل
تزریق و الکتروپوراسیون را پوشش میدهند. تجسم ارگانوئیدهای سه
بعدی با آخرین پیشرفتها در میکروسکوپ. تولید بافت شبکیه سه بعدی
با گیرنده های نوری حساس به نور از نظر فیزیولوژیکی مناسب. مدل
سازی تومورهای مغزی با استفاده از ارگانوئیدهای مغزی ویرایش شده
ژنتیکی. و ارگانوئیدهای مغز به عنوان مدلی برای مطالعه ویروس زیکا
و عفونت SARS-CoV-2. در سبک سری
Neuromethods، فصلها شامل نوع جزئیات و
توصیههای کلیدی متخصصان مورد نیاز برای به دست آوردن نتایج
موفقیتآمیز در آزمایشگاه شما میشود. جامع و پیشرفته،
تحقیقات ارگانوئیدی مغز یک منبع ارزشمند برای
محققان در سطوح مختلف یادگیری، از دانشجویان مقطع کارشناسی،
محققان اولیه و آزمایشگاه های پیشرفته است. هدف این کتاب این است
که در پیشبرد این زمینه در حال توسعه مؤثر باشد.
This volume explores multiple methods and approaches used
to generate human brain and neuroretinal organoids to address
fundamental questions in human brain research. The chapters in
this book cover topics such as self-organizing brain organoids
with ventricles amenable to injection and electroporation;
visualization of 3D organoids though the latest advancements in
microscopy; generation of 3D retinal tissue with
physiologically competent, light-sensitive photoreceptors;
modeling brain tumors using genetically edited brain organoids;
and brain organoids as a model to study Zika virus and
SARS-CoV-2 infections. In the Neuromethods
series style, chapters include the kind of detail and key
advice from the specialists needed to get successful results in
your laboratory. Comprehensive and
cutting-edge, Brain Organoid Research
is a valuable resource for researchers at various levels
of learning, ranging from undergraduate students, early
researchers, and advanced laboratories. This book aims to be
instrumental in moving this developing field
forward.
Dedication Preface to the Series Preface Contents Contributors Chapter 1: Self-Organizing Brain Organoids with Ventricles Amenable to Injection and Electroporation 1 Introduction: Neural Organoids for Modelling Human Brain Development 1.1 Self-Organizing Cerebral Organoids to Model Tissue Architecture 2 Materials 2.1 Cell Lines and Cell Culture Reagents 2.2 Injection Setup 3 Methods 3.1 Generation of Cerebral Organoids with Large Ventricles 3.2 Injection and Electroporation of Cortical Lobes 3.3 Downstream Analysis of Organoids 4 Conclusions References Chapter 2: Profiling Cell Type-Specific Gene Regulatory Regions in Human Cortical Organoids 1 Introduction 1.1 Apical Radial Glia Are Key to Understand Healthy and Diseased Cortical Development 1.2 ATAC-Seq Allows Identification of Open Chromatin with Low Input Cell Numbers 2 Materials and Equipment 2.1 iPSC Culture and Cortical Organoid Generation 2.2 Preparing Organoids for FACS Sorting 2.3 Fluorescence-Activated Cell Sorting 2.4 RNA Extraction, cDNA Synthesis, and RT-qPCR Analysis 2.5 ATAC-seq Reaction and Library Amplification 2.6 ATAC-seq Library Size Selection and Sequencing 2.7 Mouse Neural Stem Cell Isolation and Culture 2.8 Luciferase Assay 3 Methods 3.1 iPSC Culture and Cortical Organoid Generation 3.2 Labeling of Neural Cell Populations for FACS Sorting 3.2.1 DiI Labeling 3.2.2 Single-Cell Suspension 3.2.3 Fixation and Antibody Labeling 3.3 Fluorescence-Activated Cell Sorting 3.4 RNA Extraction, cDNA Synthesis, and RT-qPCR Analysis 3.5 ATAC-Seq Reaction and Library Amplification 3.6 ATAC-Seq Library Size Selection and Sequencing 3.7 Mouse Neural Stem Cell Isolation and Culture 3.8 Luciferase Assay 4 Notes/Troubleshooting 4.1 DiI Labeling 4.2 Dissociation of Organoids 4.3 FACS: Gating Single Cells 4.4 ATAC-seq: Transposition Reaction 4.5 ATAC-seq: Size Selection 4.6 mNSCs: Isolation 4.7 Luciferase Assay: Native Chromatin Context 4.8 Luciferase Assay: Variability 5 Conclusions References Chapter 3: Visualization of 3D Organoids Through the Latest Advancements in Microscopy 1 Introduction 2 Advancements in 3D Imaging of Organoids 3 Light-Sheet Microscopy for Organoid Imaging 4 Methods for Specimen Preparation 4.1 Chemical Clearing Techniques for 3D Imaging 4.2 Fluorophore Labeling Techniques for Signal Enhancement 4.3 Genetically Encoded Fluorescent Tags 4.4 Multicolor Labeling via Nontargeted or Targeted Fluorescent Tags References Chapter 4: Generation and Isolation of Retinal Ganglion Cells and Photoreceptors from Human iPSC-Derived Retinal Organoids by ... 1 Introduction: Recapitulating Retinal Development In Vitro 2 Materials 3 Methods 3.1 Generation of Human iPSC-Derived Retinal Organoids 3.2 Selection of Specific Retinal Subtypes from Retinal Organoids Using MAC-Sorting 3.2.1 Selection of Photoreceptor Cells Using CD73 Cell Surface Marker 3.2.2 Selection of Retinal Ganglion Cells Using CD90 Cell Surface Marker 3.3 Cryopreservation In Vitro of Selected Retinal Cells 3.3.1 Cryopreservation of Whole Retinal Organoids 3.3.2 Characterization of Cryopreserved CD73-Positive Photoreceptor Cells 3.3.3 Characterization of Cryopreserved CD90-Positive Retinal Ganglion Cells 4 Conclusion References Chapter 5: Micromanipulator-Assisted Subretinal Transplantation of Human Photoreceptor Reporter Cell Suspensions into Mice 1 Introduction 2 Materials 2.1 Dissociation 2.2 Sorting 2.3 Transplantation 3 Methods 3.1 Dissociation 3.2 Sorting 3.3 Transplantation 4 Notes 5 Conclusion References Chapter 6: Generation of Three-Dimensional Retinal Tissue with Physiologically Competent, Light-Sensitive Photoreceptors from ... 1 Introduction 2 Materials 2.1 Cell Lines 2.2 3D Retinal Organoid Media 2.3 Other Reagents 3 Methods 3.1 Matrigel Preparation and Plate Coating 3.1.1 Prepare Matrigel Stock (See Note 1) 3.1.2 Plate Coating for hiPSC Culture (See Note 3) 3.2 Thawing hiPS Cells 3.3 Passaging hiPS Cells 3.4 Freezing hiPS Cells Using mFreSR 3.5 Generation of Neural Aggregates 3.6 Differentiation of Neural Aggregates to Retinal Fate 3.7 Advanced Differentiation for Promoting Functional Photoreceptors 4 Characterization of Human Retinal Organoids by Immunofluorescence 4.1 Preparing Retinal Organoid Samples for Immunofluorescence Staining 4.2 Differentiation of Neural Aggregates to Retinal Fate: D7-D42 4.3 Differentiation of Retinal Organoids: Development of Retinal Layers (D42-D120) 4.4 Advanced Differentiation of Retinal Organoids: Appearance of a Bipolar Cell Layer and Functionally Active Photoreceptors (... 5 Notes 6 Conclusions References Chapter 7: Quantitative Assessment of Fluorescent Reporter Expression in 3D Retinal Organoids 1 Introduction 2 Materials 2.1 Cell Lines and Organoid Differentiation 2.2 Materials for Fluorescent Reporter Quantification 2.3 Materials for Fluorescence-Based Assessment of Oxidative Stress 3 Methods 3.1 Plate Preparation 3.2 Plate Reading 3.3 Size Normalization 3.4 Statistical Methods 3.5 Application Example: Longitudinal Tracking of Genetically Encoded Fluorescent Reporters 3.6 Application Example: Quantification of Reactive Oxygen Species by DHE Staining 3.7 Application Example: Quantification of Mitochondrial Membrane Depolarization by JC-1 Staining 4 Notes 5 Conclusions References Chapter 8: A Three-Dimensional Organoid Culture System to Model Invasive Patterns of Patient-Derived Glioma Stem Cells 1 Introduction 1.1 Role of Glioma Stem Cells in Glioblastoma 1.2 Traditional Methods to Study GSCs 1.3 Recent Models Maintain the Heterogeneity of GBM 1.4 Using Human Brain Organoids to Study GSC Invasion Patterns 2 Materials 2.1 Medium Components 3 Methods 3.1 Maintenance and Culturing of Human iPSCs 3.2 Generation of Human Brain Organoids 3.3 Culturing and Maintenance of Patient-Derived GSCs 3.4 Establishment of Different Assay Conditions to Model Patient-Derived GSCs in Brain Organoids 3.4.1 Assay 1: Coculturing of GSCs with iPSCs During Brain Organoid Differentiation 3.4.2 Assay 2: Coculturing of GSCs with Brain Organoids 3.4.3 Assay3: Fusion of GSCs Spheres to Organoids 3.5 Tissue Clearing of Cocultured Organoids 3.6 Immunostaining of Organoids and Cocultured Organoids 3.7 Immunofluorescence Microscopy and Time-Lapse Imaging of Organoids 3.7.1 Time-Lapse Imaging of Cocultured Organoids 3.7.2 Imaging of Tissue-Cleared Organoids 3.7.3 Super-Resolution Imaging of GSCs Interaction with Neurons 3.8 Culturing Organoid Slices at the Interphase of the Air-Liquid Surface to Generate Neuronal Outgrowth 3.9 Immunostaining of GSCS: Neuronal Outgrowth Interactions 4 Notes and Troubleshooting References Chapter 9: Modeling Brain Tumors Using Genetically Edited Brain Organoids 1 Introduction 1.1 Brain Tumor 1.2 Models to Study Brain Tumor 2 Materials 2.1 Plasmid Construction 2.2 Preparation of Lentivirus Particles 2.3 Animal Preparations 3 Methods 3.1 Cell Culture 3.2 Culture of Cerebral Organoids 3.3 Induce Gene Mutation/Amplification of Organoids 3.4 Preparation of Organoid for Immunostaining 3.5 RNA Sequencing 3.6 Renal Subcapsular Engrafting and Intracranial Injection 3.7 Drug Testing on Modeling Brain Tumor Cerebral Organoids 4 Conclusion and Limitation References Chapter 10: Brain Organoids as a Model to Study Zika Virus and SARS-CoV-2 Infections 1 Introduction 2 Materials 2.1 Brain Organoid Preparation 2.1.1 Equipment 2.1.2 Plasticware 2.1.3 Reagents/Cells 2.2 Viral Preparation 2.2.1 Equipment 2.2.2 Plasticware 2.2.3 Reagents/Cells 3 Methods 3.1 Brain Organoid Culture 3.2 Brain Organoid Infection 3.3 Viral Detection 3.4 Plaque Assay 3.4.1 Cell Maintenance Medium 3.5 Viral Propagation 4 Notes References Chapter 11: Infection of 3D Brain Organoids with Human Pathogenic Viruses Under Biosafety Level-3 Conditions with Subsequent I... 1 Introduction: Neurotropism of Human Pathogenic Viruses 1.1 Models to Study Viral Neurotropism 2 Material and Methods 2.1 Specific Media Compositions and Buffer Preparations 2.1.1 Maintenance Medium 2.1.2 TEM Fixation Solution 2.1.3 Lead Citrate (Reynolds) 2.1.4 Sol D 2.1.5 Protein Lysis Buffer 2.1.6 Western Blot Loading Buffer 2.1.7 hiPSC Expansion and Maintenance Medium 2.1.8 Neural Induction Medium 2.1.9 Organoid Differentiation Medium Composition 2.2 Viral Strains, Cell Lines, Instruments, and Reagents 2.2.1 Viral Strains 2.2.2 Cell Lines 2.2.3 Laboratory Instruments and Softwares 2.2.4 Laboratory Chemicals and Reagents 2.2.5 Primary and Secondary Antibodies 3 Methods 3.1 Inoculation of Cell Culture Allows Generation of Clinical Virus Isolates 3.2 Transmission Electron Microscopy to Verify Viral Infection 3.3 Determination of Viral Titer: Endpoint Dilution Assay 3.4 Generation of Human Brain Organoids 3.5 Organoid Dissociation 3.6 Inactivation of Complete 3D Brain Organoids by Cell Lysis for RNA and Protein Expression Analysis 3.7 Inactivation of 3D Brain Organoids via Fixation to Perform Confocal Microscopy 3.8 Immunostaining of Fixed Brain Organoids 3.9 Confocal Microscopy 4 Conclusion References Index