دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Tuncer Ören, Bernard P. Zeigler, Andreas Tolk سری: Simulation Foundations, Methods and Applications ISBN (شابک) : 3031110846, 9783031110849 ناشر: Springer سال نشر: 2023 تعداد صفحات: 548 [549] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 Mb
در صورت تبدیل فایل کتاب Body of Knowledge for Modeling and Simulation: A Handbook by the Society for Modeling and Simulation International به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مجموعه دانش برای مدلسازی و شبیهسازی: کتابچه راهنمای انجمن بینالمللی مدلسازی و شبیهسازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
به سفارش انجمن بینالمللی مدلسازی و شبیهسازی (SCS)، این «بدنه دانش» (BoK) مورد نیاز و مفید، درک مشترک مجموعه گستردهای از متخصصان و انجمنهای حرفهای را جمعآوری و سازماندهی میکند. span>
مدلسازی و شبیهسازی (M&S) یک رشته فراگیر است که پایه محاسباتی آزمایشهای واقعی و مجازی را ایجاد میکند و به وضوح مرزها و تعاملات سیستمها، دادهها و نمایشها را بیان میکند. این زمینه به دلیل پشتیبانی آموزشی از طریق شبیه سازی و شبیه سازها نیز به خوبی شناخته شده است. در واقع، با تأثیرگذاری روزافزون رایانهها بر فعالیتهای دنیای امروز، M&S سومین ستون درک علمی است که در کنار نظریهسازی و مشاهدات تجربی جای خود را میگیرد.
این کتاب راهنمای ارزشمند جدید است. پشتیبانی فکری برای تمام رشته ها در تجزیه و تحلیل، طراحی و بهینه سازی فراهم می کند. این به طور فزاینده ای به تعداد فزاینده رشته های محاسباتی کمک می کند، و به طیف گسترده ای از رشته ها و حوزه های کاربردی کمک می کند. علاوه بر این، هر یک از بخش های آن منابع متعددی را برای اطلاعات بیشتر ارائه می دهد. بسیار جامع، BoK دیدگاه ها و جنبه های بسیاری را نشان می دهد که تحت موضوعاتی مانند:
این جلد منحصر به فرد با بررسی چالش های نظری و عملی، به بسیاری از جنبه های M&S برای محققان، دانشجویان و شاغلان. به این ترتیب، این کتاب به خوانندگان همه رشتههای علوم، مهندسی و هنر ارائه کامل و مختصر مفاهیم، اصطلاحات و فعالیتهای مورد نیاز برای توضیح رشته M&S را میدهد.
Tuncer Ören. پروفسور ممتاز در دانشگاه اتاوا است. برنارد زیگلر پروفسور ممتاز در دانشگاه آریزونا است. آندریاس تولک دانشمند ارشد شرکت MITER است. هر سه سردبیر اعضای قدیمی و اعضای انجمن بینالمللی مدلسازی و شبیهسازی هستند. تحت رهبری سه عضو SCS، دکتر Ören، دانشگاه اتاوا، دکتر Zeigler، دانشگاه آریزونا، و دکتر Tolk، شرکت MITER، بیش از 50 محقق بین المللی از 15 کشور بینش و تجربه را برای گردآوری این اولیه ارائه کردند. مجموعه دانش M&S.
Commissioned by the Society for Modeling and Simulation International (SCS), this needed, useful new ‘Body of Knowledge’ (BoK) collects and organizes the common understanding of a wide collection of professionals and professional associations.
Modeling and simulation (M&S) is a ubiquitous discipline that lays the computational foundation for real and virtual experimentation, clearly stating boundaries―and interactions―of systems, data, and representations. The field is well known, too, for its training support via simulations and simulators. Indeed, with computers increasingly influencing the activities of today’s world, M&S is the third pillar of scientific understanding, taking its place along with theory building and empirical observation.
This valuable new handbook provides intellectual support for all disciplines in analysis, design and optimization. It contributes increasingly to the growing number of computational disciplines, addressing the broad variety of contributing as well as supported disciplines and application domains. Further, each of its sections provide numerous references for further information. Highly comprehensive, the BoK represents many viewpoints and facets, captured under such topics as:
Examining theoretical as well as practical challenges, this unique volume addresses the many facets of M&S for scholars, students, and practitioners. As such, it affords readers from all science, engineering, and arts disciplines a comprehensive and concise representation of concepts, terms, and activities needed to explain the M&S discipline.
Tuncer Ören is Professor Emeritus at the University of Ottawa. Bernard Zeigler is Professor Emeritus at the University of Arizona. Andreas Tolk is Chief Scientist at The MITRE Corporation. All three editors are long-time members and Fellows of the Society for Modeling and Simulation International. Under the leadership of three SCS Fellows, Dr. Ören, University of Ottawa, Dr. Zeigler, The University of Arizona, and Dr. Tolk, The MITRE Corporation, more than 50 international scholars from 15 countries provided insights and experience to compile this initial M&S Body of Knowledge.
Preface Contents Contributors 1 Preliminary Abstract 1.1 Scope 1.2 Terminology 1.3 Rationale for Theoretical Basis of M&S 1.4 Modeling and Simulation Framework (MSF) 1.4.1 System Concepts 1.4.1.1 System Specification Hierarchy Levels of System Specification 1.4.2 The Entities of the Modeling and Simulation Framework 1.4.2.1 Source System 1.4.2.2 Experimental Frame 1.4.2.3 Objectives and Experimental Frames 1.4.2.4 Simulator 1.4.3 Primary Relations Among Entities 1.4.3.1 Modeling Relation: Validity 1.4.3.2 Simulation Relation: Simulator Correctness 1.4.4 Other Important Relationships 1.4.4.1 Modeling as Valid Simplification 1.4.4.2 Experimental Frame—Model Relationships 1.4.5 Time 1.4.6 Mapping Informal Terminology to MSF Formalization 1.5 Basic System Entity Structure (SES) Concepts References 2 M&S Bok Core Areas and the Big Picture Abstract 2.1 The Big Picture 2.2 Data 2.3 Models and Modeling Formalisms 2.4 Model Engineering 2.4.1 Model Life Cycle 2.4.2 Definition of Model Engineering Model Life Cycle 2.4.3 Key Technologies of Model Engineering 2.4.4 General Technologies 2.4.4.1 Modeling of Model Lifecycle Process 2.4.4.2 Model Engineering Lifecycle Management 2.4.5 Model Construction Technologies 2.4.5.1 Acquisition and Management of Model Requirements 2.4.5.2 Model Specification and Language 2.4.5.3 Modeling of Process Management 2.4.6 Model Management Technologies 2.4.6.1 Model Library 2.4.6.2 Model Evolution 2.4.6.3 Model Reconfiguration Lower-Layer Reconfiguration Upper-Layer Reconfiguration 2.4.6.4 Model as a Service 2.4.6.5 Model Composition Offline Model Composition Online Model Composition 2.4.7 Analysis and Evaluation Technologies 2.4.7.1 The VV&A of a Model 2.4.7.2 The Evaluation of the Whole Process of ME 2.4.7.3 Model Maturity Definition and Evaluation 2.4.8 Supporting Technologies 2.5 Model Curation for Repository Integration: Discovery, Composition, and Reuse 2.6 Model-Based Simulation 2.6.1 Model-Based/driven Approaches 2.6.2 Simulation-Based/Driven Approaches 2.6.3 Models Simulations-Based/Driven Approaches 2.7 Transient Elimination in Simulation 2.7.1 Introduction 2.7.2 Techniques to Eliminate Transient Results 2.7.3 Stopping Criteria for Simulations 2.7.4 Conclusion References 3 Simulation as Experimentation Abstract 3.1 Types of Experimentations 3.2 Reasons to Use Simulation Experiments 3.2.1 Aren’t the Reasons Obvious? 3.2.2 Relying on Data is Often Impossible 3.2.3 Even if the Data Exists, It’s Not Enough: Understanding and Reasoning Demand Causal Models and, Sometimes, Systematic Experimentation 3.2.4 Planning Toward Objectives and Avoiding or Managing Failures 3.2.5 Cautions 3.2.5.1 Model Validity 3.2.5.2 Analysis Under Deep Uncertainty 3.3 Types of Simulation Techniques for Experimentation 3.3.1 Sections of BoK Guide Related to Experimentation 3.3.2 Simulation Experimentation for all 3 Types of System Problems 3.3.3 Relationship of Operations of Simulation and Real System 3.3.4 Use of Simulation for Decision Support 3.3.5 Statistical Experiment Design Techniques 3.4 Simulation of Discrete Systems, DEVS 3.5 Simulation of Continuous Systems 3.6 Hybrid Modelling and Simulation 3.6.1 From Complexity to Hybridization 3.6.2 Definitions 3.6.3 The Unified Conceptual Representation of Hybrid Modelling and Hybrid Simulation 3.6.4 Classification of Hybrid Modelling and Simulation into Distinct Model Types 3.7 Real-Time Discrete-Event Simulation 3.7.1 Overview: 3.7.2 Two Forms of RT-DES 3.8 Simulation of Comprehensive Systems 3.8.1 Connotation 3.8.2 The Technical Framework 3.8.3 Key Technologies 3.8.4 Development Trend 3.8.5 Application References 4 Simulation as Experience to Enhance Three Types of Skills Abstract 4.1 Types of Simulation Techniques for Experience 4.1.1 Simulation Experience for Training 4.1.2 Simulation Experience for Entertainment 4.2 Virtual Simulation 4.3 Constructive Simulation 4.3.1 Examples for Constructive Simulation 4.3.2 Serious Games 4.3.3 Additional Application Domains of Interest 4.4 Live Simulation 4.4.1 Examples for Live Simulation 4.4.2 Live Simulation in the Context of LVC Architectures 4.4.3 Enhancing Live Simulation with Augmented Reality 4.4.4 Ethical Constraints and Conclusion References 5 Simulation Games Abstract 5.1 Scope 5.2 Terminology 5.3 Applications References 6 Infrastructure Abstract 6.1 Standards 6.1.1 De Jure, De Facto, and Proprietary Standards 6.1.2 Open Standards 6.1.3 Standards Organizations 6.1.4 M&S Standards Organizations 6.1.5 Compliance Certification 6.2 Code of Best Practice 6.3 Lessons Learned 6.4 Resource Repositories 6.5 Distributed Interactive Simulation (DIS) 6.5.1 Simnet 6.5.2 Origins of the DIS Protocol 6.5.3 DIS Today 6.6 High Level Architecture (HLA) References 7 Reliability and Quality Assurance of M&S Abstract 7.1 Errors—Types and Sources 7.1.1 Definitions 7.1.2 Types of Errors 7.1.3 Terms Related with Errors 7.1.4 Terms (Other Than Error) Related with Failure 7.1.5 Other Sources of Failure 7.2 Need for Reliability (Including Philosophical/Ethical Considerations About Reliability) 7.3 Validation 7.3.1 Introduction 7.3.1.1 Validity: Perhaps a Misnomer, but One We Can Live with 7.3.1.2 Over Interpreting the Cautions 7.3.1.3 Definitions 7.3.2 Distinctions 7.3.3 Generalizing the Concept of Validation 7.3.3.1 Rethinking the Concept of Validation 7.4 Verification 7.4.1 Introduction 7.4.2 Intended Uses and Experimental Frames 7.4.3 Integration of Simulation and Formal Verification 7.4.4 Morphisms and Preservation of Properties 7.4.4.1 Probabilistic Perspective: Bayesian Reasoning 7.4.5 Summary 7.5 Failure Avoidance References 8 Ethics Abstract 8.1 Branches of Ethics 8.1.1 Ethics in Technical Disciplines 8.1.2 The Ethics of Computer Simulation 8.2 Ethics for Simulationists and Analysts Using Modeling and Simulation 8.2.1 Definitions 8.2.2 Ethics in the Cycle of Modeling and Analysis 8.2.3 Why Ethical Considerations Matter 8.2.4 Approaches to Applying Ethics 8.2.5 The Role of Professional Codes 8.2.6 A New Obligation for Those Who Build M&S and Use It for Analysts 8.2.7 Final Observation 8.3 Code of Ethics for Simulationists References 9 Enterprise Modeling and Simulation Abstract 9.1 Introduction 9.1.1 Problem Statement About Enterprise Modeling and Simulation 9.1.2 Methodological and Technical Approach 9.2 Enterprise Modeling 9.2.1 GRAI Model and GRAI Formalisms 9.2.2 BPMN 9.2.3 Other Formalisms for Information System Design 9.2.4 Conclusions 9.3 Driving Models to Simulation 9.3.1 Interoperability 9.3.2 Vertical Decomposition: Toward Alignment from Business to Operational 9.3.3 Horizontal Alignment: Toward Simulation for Better Collaboration Between Service Network 9.4 Implementing Framework and Method in MSTB Evolved 9.4.1 Models and Model Transformation in MSTB (BSM Level) 9.4.2 Using GRAI Grid and Extended Actigram* at Top BSM 9.4.3 Domain Specific Languages at Bottom BSM 9.4.4 Interface Process Model at TIM Level 9.4.5 Simulation Model Orchestration at TIM Run Time 9.4.6 Physical Infrastructure Interoperability with Simulation Model at TSM 9.4.7 MDISE and MSTB Evolved for CPS 9.5 Discussion and Conclusion References 10 Maturity and Accreditation Abstract 10.1 Models, Programs, Processes, Individuals, and Organizations 10.2 Educational Programs 10.2.1 Academic Education 10.2.2 Professional Education 10.2.3 U.S. Army M&S Professional Support References 11 Supporting Computer Domains Abstract 11.1 Digital Simulation 11.2 Mobile Simulation 11.3 Wearable Simulation 11.4 Cloud-Based Modeling and Simulation 11.4.1 Community Efforts and Emerging Standards 11.4.2 Theoretical Frameworks 11.4.3 Essential Infrastructure 11.4.4 Illustrative Use Case Application 11.4.5 Synopsys 11.5 Quantum Simulation 11.5.1 Simulation of Quantum Systems 11.5.2 Simulation Performed on Quantum Computers 11.6 High-Performance Simulation 11.6.1 Connotation 11.6.2 Technology System 11.6.3 Key Technology 11.6.4 Development Trend 11.6.5 Application Case 11.7 Parallel Evolutionary Algorithms 11.8 Extreme-Scale Simulation References 12 Synergies of Soft Computing and M&S Abstract 12.1 Fuzzy Logic and Fuzzy Simulation 12.2 Neural Networks and Neural Network Simulation 12.3 Synergies of Artificial Intelligence and M&S 12.3.1 Contribution of M&S to Artificial Intelligence 12.3.2 Contribution of Artificial Intelligence to M&S 12.4 Example: Ant Colony Simulation 12.5 Synergies of Agents and M&S 12.6 Facets of Agent-Directed Simulation 12.6.1 Agent Simulation or Agent-Based Simulation 12.6.2 Agent-Monitored Simulation 12.6.3 Agent-Supported Simulation 12.6.3.1 Agent Support for Front-End Interfaces 12.6.3.2 Agent Support for Back-End Interfaces 12.6.3.3 Agent Support to Provide Cognitive Abilities to the Elements of M&S Systems 12.6.3.4 Agent Support for Symbolic Processing of Elements of M&S Studies Appendix 1: Types of agents (adapted from Ören [53] and TBD-dic [55]) Appendix 2: Agent-related concepts (adapted from Ören [53] and TBD-dic [55]) References 13 Supporting Science Areas Abstract 13.1 Systems Science 13.2 Mathematics: Differential Equations 13.3 Mathematics: Probability 13.4 Mathematics: Frequently Used Distributions in Simulation and Their Characteristics and Applications 13.4.1 Exponential Distribution 13.4.2 Normal (Gaussian) Distribution 13.4.3 Poisson Distribution 13.4.4 Uniform Distribution 13.4.5 Multinomial Distribution 13.4.6 Log-Normal Distribution 13.4.7 Weibull Distribution 13.4.8 Pareto Distribution 13.4.9 Geometric Distribution 13.4.10 Gamma Distribution 13.4.11 Inverse Gamma Distribution 13.4.12 Erlang Distribution 13.4.13 Beta Distribution 13.4.14 Binomial Distribution 13.4.15 Negative Binomial Distribution 13.4.16 Chi-Square Distribution 13.4.17 F-Distribution 13.4.18 Student’s t-Distribution 13.4.19 Concluding Remarks 13.5 Queuing Theory 13.6 Statistics References 14 Supporting Engineering Areas Abstract 14.1 Systems Engineering 14.1.1 M&S-Based Systems Engineering 14.1.2 Simulation Systems Engineering 14.1.3 Bridging the Gap Between M&S and Systems Life Cycle Processes 14.2 VR/AR Engineering 14.2.1 Connotation of VR/AR Engineering 14.2.2 Architecture 14.2.3 Key Technologies 14.2.3.1 Human–Computer Interaction Technology 14.2.3.2 Haptic Feedback Technology 14.2.3.3 Environment and Object Modeling Technology 14.2.3.4 System Integration Technology 14.2.3.5 3D Registration Technology 14.2.3.6 3D/4D Display and Stereo Synthesis Technology 14.2.3.7 Virtuality and Reality Fusion-Based Display Technologies 14.2.4 Development Trend 14.2.4.1 Miniaturization and Mobility 14.2.4.2 High Fidelity 14.2.4.3 High-Virtuality-Reality Fusion 14.2.4.4 Networking 14.2.4.5 Intelligence 14.2.5 Applications 14.3 Visualization for Modeling and Interactive Simulation 14.3.1 Visual Component Modeling 14.3.2 Visual Interactive Simulation 14.3.3 Visualization Designs References 15 Supporting Social Science and Management Areas Abstract 15.1 Background: Contrasts of Paradigm and Semantics 15.1.1 Theory 15.1.2 Models 15.1.3 Explanation 15.1.4 Causal Variables 15.1.5 Prediction 15.1.6 Evaluating Models 15.2 Supplementing Traditional Methods of Social Science (and Other Type-A Endeavors) 15.2.1 Classic System Methods 15.2.2 Newer Themes 15.2.2.1 Qualitative Modeling 15.2.2.2 Agent-Based Generative Modeling (and Inverse Generative Modeling) 15.3 Aiding Strategic Decision-Making 15.3.1 Dealing with Uncertainty and Disagreement 15.3.2 Designing for Exploratory Analysis 15.3.3 Designing Decision Aids with Education and Experience-Building in Mind References 16 Philosophy and Modeling and Simulation Abstract 16.1 Philosophical Discussion of Simulation Epistemology 16.1.1 Concepts and Definitions 16.1.1.1 Ontology 16.1.1.2 Epistemology 16.1.2 Ontology and Simulation 16.1.3 Epistemology of Simulation 16.2 Scientific Research Methods and Simulation 16.2.1 A Timeline of Scientific Research Method Developments 16.2.2 The Increasing Role of Simulation with the Scientific Methods 16.2.3 Modern Role of Models in the Scientific Method 16.2.4 Simulation-Based Experiments Supporting Scientific Methods 16.2.5 Conclusion on the Role of Modeling and Simulation 16.3 What Type of Knowledge Can Be Acquired from Simulation? 16.4 Criteria for Provisional Acceptance in Science: Objectivity, Completeness, and Reproducibility 16.5 Hypothesis/Proposing Explanation in Simulation 16.5.1 What Can Be Expected of the Explanatory Relation? 16.5.2 Description, Prediction, Confirmation, and Explanation 16.5.3 Can Computer Simulations Explain? 16.5.4 Generating/Testing Hypotheses with Simulations 16.6 Experiments Versus Simulation 16.7 Experience Versus Simulation 16.8 Simulation in the Spotlight of Cutting-Edge Technologies 16.9 Modeling and Simulation (M&S) as a Discipline References 17 History of Simulation Abstract 17.1 General History of Modeling and Simulation 17.1.1 “Modeling and Simulation” in Pre-History 17.1.2 Continuous System Simulation 17.1.3 Event-Oriented Simulation 17.1.4 Discrete Event Simulation Programing Languages 17.1.5 Model-Based Simulation 17.2 History of Simulation for Experimentation on Digital Computers 17.3 Evolution of Computational Modeling and Simulation for Problem Solving 17.3.1 Monte Carlo Modeling 17.3.2 Emergence of Simulation Modeling Languages 17.3.3 The Arrival of Simulation Programs 17.3.4 Expansion of Simulation 17.3.5 Simulation and Paradigm Shifts 17.3.6 The Simulation Research that Advanced the Simulation Use 17.3.7 Simulation as the Method of Choice 17.4 Previous Studies on M&S BoK References 18 Core Research Areas Abstract 18.1 Conceptual Modeling 18.2 Model Reuse 18.3 Embedded Simulation/Ubiquitous Simulation 18.3.1 Connotation 18.3.2 Technology System 18.3.2.1 Modeling Theory and Methodology 18.3.2.2 Simulation System Theory and Technology 18.3.2.3 Simulation Application Engineering Theory and Technology 18.3.3 Key Technologies 18.3.3.1 Embedded Simulation/Ubiquitous Simulation Modeling Technology 18.3.3.2 Embedded Simulation/Ubiquitous Simulation System Architecture 18.3.3.3 Software Platform and Middleware of Embedded Simulation/Ubiquitous Simulation System 18.3.3.4 Perception and Interaction Technologies Between Human and Embedded Simulation/Ubiquitous Simulation Service 18.3.3.5 Simulation Service Migration Technology for Embedded Simulation/Ubiquitous Simulation Mode 18.3.3.6 Coordinated Management and Integration Technologies of Simulation Space and Physical/Logical Space 18.3.3.7 System Security Technology 18.3.3.8 Embedded Simulation/Ubiquitous Simulation Application Technologies 18.3.4 Development Tendency 18.3.4.1 Ubiquitous Simulation Service 18.3.4.2 Ternary Integration of “Human-Cyber-Physical” 18.3.4.3 Ubiquitous Human–Computer Interaction 18.3.5 Application Scenarios 18.3.5.1 Intelligent Manufacturing 18.3.5.2 Intelligent Transportation 18.3.5.3 Intelligent Training 18.4 Data-Driven M&S 18.4.1 Introduction 18.4.2 Data Assimilation Techniques 18.4.3 An Example: Real-Time Scheduling of Cloud Manufacturing Services Based on Dynamic Data-Driven Simulation 18.4.3.1 Model of DCMS Problem 18.4.3.2 The Dynamic Scheduling Method 18.4.3.3 System Framework 18.4.3.4 Scheduling Rules 18.4.3.5 DDDS Strategies 18.5 Research Enabled by the M&S Framework: Application to Neuromorphic Architecture Design 18.6 Model Behavior Generation for Multiple Simulators 18.7 Simulation-Based Disciplines References 19 Trends, Desirable Features, and Challenges Abstract 19.1 Trends 19.1.1 New Digital/Data-Based Modeling and Simulation Technology 19.1.2 New Virtual/Augmented Reality Modeling and Simulation Technology 19.1.3 New High-Performance/Parallel Modeling and Simulation Technology 19.1.4 New Networked/Cloud-Based Modeling and Simulation Technology 19.1.5 New Intelligent Modeling and Simulation Technology 19.1.6 New Ubiquitous Modeling and Simulation Technology 19.2 Desirable Features 19.2.1 Ideal Characteristics in Simulation Modeling Theory, Method, and Technology 19.2.2 Ideal Characteristics in Simulation Systems and Supporting Technologies 19.2.3 Ideal Characteristics in Simulation Application Engineering Technology 19.3 Challenges 19.3.1 Challenges to Simulation Modeling Theory and Methods 19.3.1.1 Challenges to Virtual Reality Modeling Theory and Methods 19.3.1.2 Challenges to Networked Simulation Modeling Theory and Methods 19.3.1.3 Challenges to Intelligent Simulation Modeling Theory and Methods 19.3.1.4 Challenges to High-Performance Simulation Modeling Theory and Methods 19.3.1.5 Challenges to Data-Driven Simulation Modeling Theory and Methods 19.3.1.6 Challenges to New AI-Based Simulation Modeling Theory and Methods 19.3.1.7 Challenges to Simulation Modeling Theory and Method of System-of-Systems Confrontation 19.3.1.8 Challenges to the Unified Simulation Modeling Theory Based on DEVS 19.3.2 Challenges to Simulation Systems and Supporting Technology 19.3.2.1 Challenges to Virtual Reality System and Supporting Technology 19.3.2.2 Challenges to Networked Simulation System and Supporting Technology 19.3.2.3 Challenges to Intelligent Simulation System and Technology 19.3.2.4 Challenges to High-Performance Simulation System and Supporting Technologies 19.3.2.5 Challenges to Data-Driven Simulation System and Technology 19.3.2.6 Challenges to New AI-Based Simulation Systems and Supporting Technologies 19.3.2.7 Challenges to Simulation Systems and Supporting Technologies of System-of-Systems Confrontation 19.3.2.8 Challenges to DEVS-Based Simulation Interoperability Supporting Technology 19.3.3 Challenges to Simulation Application Technology 19.3.3.1 Challenges to Virtual Reality Application Engineering 19.3.3.2 Challenges to Networked Simulation Application Engineering 19.3.3.3 Challenges to Intelligent Simulation Application Engineering 19.3.3.4 Challenges to High-Performance Simulation Application Engineering 19.3.3.5 Challenges to Data-Driven Simulation Application Engineering 19.3.3.6 Challenges to New AI-Based Simulation Application Engineering 19.3.3.7 Challenges to Simulation Application Engineering of System-of-Systems Confrontation 19.3.3.8 Challenges to DEVS-Based Simulation Application Engineering References Appendix A: Terminology and Other Reference Documents Appendix B: Bios of the Contributors Index