دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2021] نویسندگان: Zibin Zheng (editor), Hong-Ning Dai (editor), Jiajing Wu (editor) سری: ISBN (شابک) : 9811601267, 9789811601262 ناشر: Springer سال نشر: 2021 تعداد صفحات: 175 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 Mb
در صورت تبدیل فایل کتاب Blockchain Intelligence: Methods, Applications and Challenges به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش بلاک چین: روش ها، کاربردها و چالش ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Acknowledgments Contents About the Editors 1 Overview of Blockchain Intelligence 1.1 Overview 1.2 Blockchain 1.3 Smart Contract 1.4 Blockchain Intelligence 1.4.1 Limitations of Blockchain and Smart Contracts 1.4.2 Opportunities Brought by Blockchain Intelligence 1.5 Summary References 2 On-chain and Off-chain Blockchain Data Collection 2.1 Overview 2.2 Ethereum and Smart Contracts 2.2.1 Peer and Blockchain 2.2.2 Smart Contract 2.2.3 Tokens and Clients 2.3 Raw Data Extraction from Ethereum 2.3.1 Block 2.3.2 Trace 2.3.3 Receipt 2.4 Data Exploration of Ethereum 2.4.1 Dataset 1: Block and Transaction 2.4.2 Dataset 2: Internal Ether Transaction 2.4.3 Dataset 3: Contract Info 2.4.4 Dataset 4: Contract Call 2.4.5 Dataset 5: ERC20 Token Transaction 2.4.6 Dataset 6: ERC721 Token Transaction 2.5 Applications of XBlock-ETH 2.5.1 Blockchain System Analysis 2.5.1.1 Decentralization Analysis 2.5.1.2 Gasprice Prediction 2.5.1.3 Performance Benchmark 2.5.2 Smart Contract Analysis 2.5.2.1 Contract Similarity and Recommendation 2.5.2.2 Contract Developer Analysis 2.5.2.3 Contract Vulnerability Detection 2.5.2.4 Fraud Detection 2.5.3 Cryptocurrency Analysis 2.5.3.1 Cryptocurrency Transferring Analysis 2.5.3.2 Cryptocurrency Price Analysis 2.5.3.3 Fake User Detection 2.6 Summary References 3 Analysis and Mining of Blockchain Transaction Network 3.1 Overview 3.2 Basic Knowledge of Network 3.2.1 Concept of Network 3.2.2 Mathematical Representation of Network 3.3 Blockchain Transaction Network 3.3.1 Method of Modeling Blockchain Transaction Network 3.3.2 Modeling Ethereum Transaction Network by Graph 3.3.2.1 Data Collection 3.3.2.2 Network Construction 3.4 Data Analysis and Mining Based on Blockchain Transaction Network 3.4.1 Temporal Weighted Multidigraph Embedding 3.4.1.1 Random Walk 3.4.1.2 Learning Process 3.4.2 Phishing Scam 3.4.2.1 Data Acquisition 3.4.2.2 Setting 3.4.2.3 Metrics 3.4.2.4 Results 3.4.3 Link Prediction 3.4.3.1 Data Acquisition 3.4.3.2 Setting 3.4.3.3 Results 3.4.4 Transaction Tracking on Blockchain 3.4.4.1 Embedding Based Link Prediction for Investigation 3.4.4.2 Evaluation Measurement of Temporal Link Prediction 3.4.5 Results and Analysis 3.4.5.1 Investigation on the Transaction Time 3.4.5.2 Investigation on the Transaction Amount 3.4.5.3 Investigation on Both Factors 3.5 Summary References 4 Intelligence-Driven Optimization of Smart Contracts 4.1 Overview 4.2 Smart Contracts Similarity Analysis 4.2.1 Syntax Similarity Analysis 4.2.2 Semantic Similarity Analysis 4.2.3 Similarity Calculation of Smart Contracts 4.3 Differentiated Code Recommendation 4.3.1 Similar Smart Contracts Clustering 4.3.2 Differentiated Code Extraction 4.4 Case Study 4.4.1 Dataset 4.4.2 Research Questions 4.4.3 Evaluation Criteria 4.4.4 Results Analysis 4.4.4.1 RQ1 4.4.4.2 RQ2 4.4.4.3 RQ3 4.4.5 Cluster Analysis 4.5 Discussion 4.5.1 Related Work References 5 Misbehavior Detection on Blockchain Data 5.1 Overview 5.2 Data Analysis on Blockchain 5.2.1 Analysis Based on Complex Network 5.2.2 Analysis Based on Data Mining Methods 5.2.3 Analysis Based on Statistic Tools 5.3 Case Study: Ponzi Scheme Detection 5.3.1 Ponzi Scheme on Ethereum 5.3.2 Ethereum and Smart Contracts 5.3.2.1 A Source Code Snippet of a Smart Ponzi Scheme 5.3.2.2 Deploy a Contract 5.3.3 Data, Feature Extraction, and Classification Model 5.3.3.1 Data 5.3.3.2 Account Features 5.3.3.3 Code Features 5.3.3.4 Classification Model 5.3.4 Experimental Results and Feature Analysis 5.3.4.1 Experiment Setting 5.3.4.2 Results Summary 5.3.4.3 Feature Analysis 5.3.4.4 Application 5.3.5 Related Work 5.3.6 Future Work 5.4 Case Study: Phishing Scam Detection 5.4.1 Phishing Scams on Ethereum 5.4.2 Background and Related Work 5.4.3 Proposed Method 5.4.3.1 Cascade Feature Extraction Method 5.4.3.2 Dual-Sampling Ensemble Method 5.4.4 Data Collection and Preparation 5.4.4.1 Data Collection 5.4.4.2 Data Cleaning 5.4.5 Experiment Result and Analysis 5.4.5.1 Experiment Settings 5.4.5.2 Method Comparison 5.4.5.3 Example Sampling Effect Analysis 5.4.5.4 Feature Sampling Evaluation 5.4.5.5 Feature Analysis 5.4.6 Conclusion and Future Work 5.5 Summary References 6 Market Analysis of Blockchain-Based Cryptocurrencies 6.1 Overview 6.2 Features Analysis on Cryptocurrencies Market 6.2.1 Introduction 6.2.2 Related Work 6.2.3 Methods 6.2.3.1 Detrended Fluctuation Analysis 6.2.3.2 A-MFDFA Method 6.2.3.3 Causality-in-Quantiles Test 6.2.4 Data and Empirical Findings 6.2.4.1 Data 6.2.5 Results 6.2.5.1 Long-Range Dependence 6.2.5.2 Multi-fractality 6.2.5.3 Causality 6.3 Detecting Abnormal Schemes on Cryptocurrencies Market 6.3.1 Introduction 6.3.2 Dataset and the Algorithm 6.3.2.1 Dataset 6.3.2.2 Improved Apriori Algorithm 6.4 Experimental Results 6.4.1 Abnormal Trading Behavior 6.4.2 Abnormal Trading Price 6.5 Summary References 7 Open Research Directions 7.1 Overview 7.2 Federated Learning on Blockchain 7.3 Collective Intelligence Bestowing Blockchain 7.3.1 Collective Intelligence Bestowing Blockchain Systems 7.3.2 Collective Intelligence Bestowing Smart Contracts 7.4 Artificial Intelligence to Enhance Blockchain Automation 7.4.1 Intelligent Operational Management of Blockchain Systems 7.4.2 AI-Empowered Scalable Blockchain Systems References