دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Victor Sapritsky. Alexander Prokhorov
سری: Springer Series in Measurement Science and Technology
ISBN (شابک) : 9783030577872, 9783030577896
ناشر: Springer International Publishing
سال نشر: 2020
تعداد صفحات: 697
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 29 مگابایت
در صورت تبدیل فایل کتاب Blackbody Radiometry: Volume 1: Fundamentals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رادیومتری جسم سیاه: جلد 1: مبانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Acronyms 1 Introduction 1.1 Terminological Conventions 1.2 International System of Units (SI) 1.3 Blackbody Radiation Source: Measurement Principles 1.4 Blackbody Radiometry and Temperature Scale 1.4.1 Preliminaries 1.4.2 International Temperature Scale of 1990 (ITS-90) 1.4.3 Radiometric Measurement of Thermodynamic Temperature 1.4.4 The Kelvin Redefined and Its Mise En Pratique 1.5 Applications of Blackbody Radiometry 1.5.1 Realization of Radiometric Scales 1.5.2 Pre-flight Calibration of Remote Sensing Instrumentation 1.5.3 In-Flight Radiometric Calibration 1.5.4 Other Radiometric Applications 1.6 Structure of the Book 1.6.1 Synopsis of Volume I 1.6.2 Volume II: Content at a Glance 1.6.3 To Whom is This Book Addressed and How to Use It? References 2 Essentials of Optical Radiation Metrology 2.1 Subject and Foundations of Optical Radiometry 2.2 Radiometric Quantities 2.2.1 Optical Range of Electromagnetic Spectrum 2.2.2 Total Radiometric Quantities 2.2.3 Spectral Radiometric Quantities 2.2.4 Responsivity of Radiation Detector 2.2.5 Band-Limited and Spectrally Weighted Quantities 2.2.6 Photon Counterparts of Radiometric Quantities 2.3 An Overview of Basic Concepts of Metrology 2.3.1 Measurement 2.3.2 Performance Characteristics of Measurement 2.3.3 Calibration and Traceability of Measuring Instruments 2.3.4 Radiometric Scales 2.4 GUM Approach for Measurement Uncertainty Evaluation 2.4.1 Evaluation of Measurement Uncertainties 2.4.2 Combined Uncertainty 2.4.3 Expanded Uncertainty 2.4.4 Reporting Measurement Results 2.4.5 Conditions for the Application of the GUM Framework 2.5 Monte Carlo Modeling of Measurements for Uncertainty Analysis 2.5.1 The Main Ideas of Stochastic Simulation of Measurement Errors 2.5.2 Algorithm of the Monte Carlo Simulation 2.5.3 Case Studies References 3 Theoretical Basis of Blackbody Radiometry 3.1 Introductory Notes 3.2 Blackbody Radiation 3.2.1 Concept of a Perfect Blackbody 3.2.2 Planck’s Distribution and Wien’s Displacement Law 3.2.3 Approximations of Planck’s Law 3.2.4 Sensitivity Coefficients for Planck’s Equation 3.2.5 Integration of the Planck Equation. The Stefan-Boltzmann Law 3.2.6 Blackbody Radiation in Refractive Media 3.3 Definition of Radiative Properties of Real Bodies 3.3.1 Terminology Notes 3.3.2 Absorptance 3.3.3 Reflectance 3.3.4 Transmittance 3.3.5 Emissivity and Kirchhoff’s Law 3.3.6 Radiometric Temperatures 3.4 Radiation Heat Transfer in Nonparticipating Media 3.4.1 Preliminary Matters 3.4.2 Diffuse View Factors 3.4.3 Radiation Exchange in Diffuse Gray Enclosures 3.4.4 Beyond the Diffuse Gray Approximation References 4 Effective Emissivity 4.1 Definitions of Effective Emissivities 4.1.1 Effective Emissivity of Isothermal Cavity 4.1.2 Cavity Effect 4.1.3 Effect of Background Thermal Radiation 4.1.4 Effective Emissivity of Nonisothermal Cavity 4.1.5 Effect of Temperature Non-uniformity 4.2 Approximate Formulae for Effective Emissivities of Isothermal Diffuse Cavities 4.3 Method of Integral Equations for Effective Emissivities of Diffuse Cavities 4.4 Monte Carlo Method for Effective Emissivity Calculations 4.4.1 Core Ideas and Milestones 4.4.2 Models of Reflection 4.4.3 Accuracy of the Monte Carlo Results 4.5 General Monte Carlo Ray Tracing Algorithm 4.5.1 Data Input and Pre-processing 4.5.2 Modeling the Viewing Conditions 4.5.3 Ray Tracing Procedure 4.5.4 Modeling the Reflection 4.5.5 Calculation of the Effective Emissivity 4.6 Experimental Determination of Effective Emissivities 4.6.1 General Principles and Rationales 4.6.2 Radiometric Technique for Measuring Effective Emissivity 4.6.3 Measurement of Effective Reflectance Using Integrating Spheres 4.6.4 Hemispherical Irradiation of a Cavity References 5 Elements of Blackbodies Design 5.1 Introductory Notes 5.2 Parameters and Characteristics of Blackbodies 5.3 Classification Systems for Blackbodies 5.4 Overview of Thermal Designs of Blackbodies 5.4.1 Indirect Resistance Heating 5.4.2 Fixed-Point Blackbodies 5.4.3 Heat-Pipe Blackbodies 5.4.4 Fluid-Bath and Fluid-Circulation Blackbodies 5.4.5 Thermoelectric Cooling and Heating 5.4.6 Direct Resistance Heating 5.4.7 Induction Heating 5.5 Methods for Improving Effective Emissivity 5.5.1 Flat-Plate Blackbodies 5.5.2 Blackbody Cavities 5.5.3 Regular Grooving of Radiating Surfaces 5.5.4 Use of Pyramid Arrays 5.5.5 Multiple-Cavity Blackbodies 5.5.6 Use of Specular Enclosures References 6 Materials for Blackbody Radiators 6.1 Preliminary Remarks 6.1.1 Principles of Materials Selection 6.1.2 Availability of Radiation Characteristics Data 6.1.3 Required Accuracy of Emissivity Data 6.2 Black Paints and Coatings 6.2.1 NEXTEL Velvet-Coating 811–21 6.2.2 Aeroglaze Z306 6.2.3 Pyromark High-Temperature Paints 6.2.4 Carbon Nanotube Coatings 6.3 Oxidized Metals and Alloys 6.3.1 Anodized Aluminum 6.3.2 Oxidized Stainless Steel 6.3.3 Oxidized Inconel 6.4 Graphite 6.4.1 Physical Properties of Synthetic Graphites 6.4.2 Radiation Properties 6.4.3 Oxidation and Sublimation of Graphite 6.5 Pyrolytic Graphite 6.5.1 Manufacturing and Properties 6.5.2 Spectral Emissivity References 7 Contact Measurements of Blackbody Temperatures 7.1 Introductory Notes 7.2 Overview of Contact Thermometers 7.2.1 Principles of a Contact Thermometer Selection 7.2.2 Standard Platinum Resistance Thermometers 7.2.3 Industrial Platinum Resistance Thermometers 7.2.4 NTC Thermistors 7.2.5 Thermocouples 7.3 Systematic Errors in Contact Thermometry of Blackbodies 7.3.1 Main Sources of Systematic Errors 7.3.2 Temperature Drop Effect 7.3.3 Positioning Effect 7.3.4 Proper Positioning of a Contact Thermometer: Case Studies 7.4 Contact Measurements of Temperature Nonuniformities of Blackbody Radiators 7.4.1 Using a Movable Temperature Sensor 7.4.2 The Use of Fixed Sensors References 8 Radiation Thermometry of Blackbodies 8.1 Introduction 8.2 Design Consideration and Defining Parameters of Radiation Thermometers 8.2.1 Generalized Scheme and Measurement Equation 8.2.2 Defining Parameters of Radiation Thermometers 8.2.3 Detector Nonlinearity 8.2.4 Size-of-Source Effect 8.3 Realization of the ITS-90 Above the Freezing Point of Silver 8.3.1 Solution of Measurement Equation 8.3.2 Primary Standard Radiation Thermometers 8.3.3 Temperature Uncertainty of the Planckian Extrapolation 8.4 Temperature Interpolation and Extrapolation Using Sakuma-Hattori Equation 8.4.1 Sakuma-Hattori Equation 8.4.2 Uncertainty Components Related to Fixed Points 8.4.3 Uncertainty Components Related to Measured Signals 8.4.4 Uncertainty of Single-Point Sakuma-Hattori Extrapolation 8.4.5 Uncertainty of Two-Point Sakuma-Hattori Interpolation 8.4.6 Uncertainty of Sakuma-Hattori Interpolation Using Three or More Fixed Points 8.5 Measuring Blackbody Temperature Distributions Using Radiation Thermometry 8.5.1 Radiance Temperature Scanning 8.5.2 Radiation Thermometry with Optical Fibers 8.5.3 Camera-Based Technique References 9 Absolute Primary Radiometric Thermometry 9.1 Principles of Absolute Primary Radiometric Thermometry 9.2 Absolute Cryogenic Radiometer 9.2.1 Electrical Substitution Principle 9.2.2 Room-Temperature Absolute Radiometers 9.2.3 Physical Properties of Materials at Cryogenic Temperatures 9.2.4 Modern Absolute Cryogenic Radiometers 9.3 Trap Detector as a Transfer Standard 9.3.1 Design Features of Trap Detectors 9.3.2 Modeling of the Internal Quantum Efficiency of Silicon Photodiodes 9.3.3 Spectral Interpolation Using Trap Detectors 9.3.4 Uncertainties in Calibration of Trap Detectors 9.4 Methods of Absolute Primary Radiometric Thermometry 9.4.1 The Basic Measurement Equations 9.4.2 The Spectral Power Method 9.4.3 The Irradiance Method 9.4.4 The Hybrid Method 9.4.5 The Radiance Method 9.4.6 The Generic Measurement Equation for Blackbody Temperature 9.5 Modern Facilities for Calibrating Filter Radiometers 9.5.1 Preliminary Considerations 9.5.2 Calibrations with Tunable Lasers 9.5.3 Monochromator-Based Calibrations for the Radiance Method 9.5.4 The Use of Supercontinuum Light Sources and Modern Monochromatizing Devices 9.6 Uncertainty in Calibrations of Filter Radiometers 9.6.1 Overview of Uncertainty Components 9.6.2 Wavelength Scale 9.6.3 Power Responsivity of a Transfer Detector 9.6.4 Out-of-Band Response 9.6.5 Geometric Factor 9.6.6 Precision Apertures 9.6.7 Diffraction on Apertures 9.7 Uncertainty Estimation in Measuring Thermodynamic Temperatures of Blackbodies 9.7.1 Introductory Notes 9.7.2 Uncertainty of the Integrated Spectral Quantity 9.7.3 Uncertainty Propagation Using Generic Measurement Equation 9.7.4 Uncertainty Propagation Using Sakuma-Hattori Equation References Appendix A Values of Some Fundamental Physical Constants Appendix B Fixed Points Appendix C Glossary of Metrology Terms Appendix D Cumulative Fractional Blackbody Function F Index