دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Second ed.] نویسندگان: Sergei G. Rubin, Kirill A. Bronnikov سری: ISBN (شابک) : 9789811233449, 9811233446 ناشر: سال نشر: 2022 تعداد صفحات: [591] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Black holes, cosmology and extra dimensions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیاهچاله ها، کیهان شناسی و ابعاد اضافی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب با فرض دانش اولیه نسبیت خاص و عام، خواننده را به مشکلاتی که در تحقیقات مدرن مورد بررسی قرار می گیرد، در مورد سیاهچاله ها، کرم چاله ها، کیهان شناسی و ابعاد اضافی راهنمایی می کند. بخش اول آن به پیکربندیهای میدان قوی محلی (سیاهچالهها و کرمچالهها) در نسبیت عام و مرتبطترین الحاقات آن اختصاص دارد: تانسور اسکالر، f(R)، و نظریههای چند بعدی. بخش دوم کیهانشناسی، از جمله تورم و مشکلات توصیف یکپارچه از کل تکامل جهان را مورد بحث قرار میدهد. بخش سوم به نظریه های چند بعدی گرانش مربوط می شود و شامل تعدادی از نتایج اصلی است که توسط نویسندگان به دست آمده است. کار نمایشی برای مکانیسمی از تقارن ها و تشکیل ثابت های اساسی انجام می شود. رویکرد اصلی به گرانش چند بعدی غیرخطی که قادر به ایجاد یک چشم انداز منحصر به فرد برای توصیف پدیده های مختلف است، برجسته شده است. بسیاری از مطالب قبلاً فقط در نشریات مجلات ارائه شده بود و برای محتوای کتاب جدید است، به عنوان مثال، در مورد سیاهچاله های معمولی، راه حل های مختلف میدان اسکالر. ، کرم چاله ها و پایداری آنها، تورم، خوشه های سیاهچاله های اولیه و گرانش چند بعدی. دو مبحث آخر در این ویرایش جدید کتاب اضافه شده است. فصلهای دیگر نیز بهروزرسانی میشوند تا شامل اکتشافات جدیدی مانند تشخیص امواج گرانشی باشد.
Assuming basic knowledge of special and general relativity, this book guides the reader to problems under consideration in modern research, concerning black holes, wormholes, cosmology, and extra dimensions. Its first part is devoted to local strong field configurations (black holes and wormholes) in general relativity and its most relevant extensions: scalar-tensor, f(R), and multidimensional theories. The second part discusses cosmology, including inflation and problems of a unified description of the whole evolution of the universe. The third part concerns multidimensional theories of gravity and contains a number of original results obtained by the authors. Expository work is conducted for a mechanism of symmetries and fundamental constants formation. The original approach to nonlinear multidimensional gravity that is able to construct a unique perspective describing different phenomena is highlighted.Much of the content was previously presented only in journal publications and is new for book contents, e.g., on regular black holes, various scalar field solutions, wormholes and their stability, inflation, clusters of primordial black holes, and multidimensional gravity. The last two topics are added in this new edition of the book. The other chapters are also updated to include new discoveries like the detection of gravitational waves.
Contents Acknowledgments Notations Abbreviations 1. Modern ideas of gravitation and cosmology — a brief essay 1.1 Einstein after Einstein 1.2 The technological breakthrough 1.3 To quantize or not? 1.4 The zoo of theories 1.5 Gravitation and the Universe Part I. Gravitation 2. Fundamentals of general relativity 2.1 Special relativity — Minkowski geometry 2.1.1 Geometry 2.1.2 Coordinate transformations 2.1.3 Kinematic effects 2.1.4 Elements of relativistic point mechanics 2.2 Riemannian space–time — coordinate systems and reference frames 2.2.1 Covariance, maps and atlases 2.2.2 Reference frames and relativity 2.2.3 Reference frames and chronometric invariants 2.2.4 Covariance and relativity 2.3 Riemannian space–time — curvature 2.4 Gravitational field action and dynamic equations 2.4.1 The Einstein equations 2.4.2 Geodesic equations 2.4.3 The correspondence principle 2.5 Macroscopic matter and nongravitational fields in GR 2.5.1 Perfect fluids 2.5.2 Anisotropic fluids 2.5.3 Scalar fields 2.5.4 The electromagnetic field 2.6 Energy conditions 2.7 The most symmetric spaces 2.7.1 Isometry groups and Killing vectors 2.7.2 Isotropic cosmology — the dS and AdS spaces 3. Spherically symmetric space–times: Black holes 3.1 Spherically symmetric gravitational fields 3.1.1 A regular center and asymptotic flatness 3.2 The Reissner–Nordström–(anti-)de Sitter solution 3.2.1 Solution of the Einstein equations 3.2.2 Special cases of the RNdS solution 3.3 Horizons and geodesics in static, spherically symmetric space–times 3.3.1 The general form of geodesic equations 3.3.2 Horizons, geodesics and the quasiglobal coordinate 3.3.3 Null geodesics and gravitational lensing 3.3.4 Transitions to Lemaître reference frames 3.3.5 Horizons, R- and T-regions 3.4 Schwarzschild black holes — geodesics and a global description 3.4.1 R- and T-regions 3.4.2 Geodesics in the R-region 3.4.3 Massive and massless particle capture by a black hole 3.4.4 A global description — the Kruskal metric 3.4.5 From Kruskal to Carter–Penrose diagram for the Schwarzschild metric 3.5 Global causal structure of space–times with horizons 3.5.1 Crossing horizons in the general case 3.5.2 Construction of Carter–Penrose diagrams 3.6 A black hole as a result of gravitational collapse 3.6.1 Internal and external regions — Birkhoff’s theorem 3.6.2 Gravitational collapse of a spherical dust cloud 4. Spherical space–times with scalar fields 4.1 Massless minimally coupled scalar fields in GR 4.1.1 Solutions with a massless scalar field 4.1.2 Phantom scalar fields — the anti-Fisher solution 4.1.3 Cold black holes in the anti-Fisher solution 4.2 Scalar fields in some extensions of GR 4.2.1 The general STT, Jordan and Einstein frames 4.2.2 F(R) gravity 4.2.3 Hybrid metric-Palatini gravity 4.3 Geometries with conformally coupled scalar fields 4.3.1 Models with a canonical field (ε = 1) 4.3.2 Models with a phantom field (ε = −1) 4.4 Some other STT solutions 4.4.1 Solutions with nonconformal coupling 4.4.2 Vacuum and electrovacuum solutions in the Brans–Dicke theory 4.4.3 Summary for massless scalar fields 4.5 Scalar fields with arbitrary potentials — no-go theorems 4.5.1 What is the use of no-go theorems? 4.5.2 Basic equations 4.5.3 Global structure theorems 4.5.4 No-hair theorem 4.5.5 Two expressions for the mass and the properties of particle-like solutions 5. More about black holes 5.1 Examples of black holes with nonzero scalar field potentials 5.1.1 Example 1: r2(x) = x2 − a2 5.1.2 Example 2: r2(x) = x2 + a2 5.1.3 Extensions 5.2 Regular black holes and black universes 5.2.1 Different kinds of regular black holes 5.2.2 Black universes with minimally coupled scalar fields 5.2.3 Regular black holes in a brane world 5.3 Rotating black holes 5.4 Black hole thermodynamics and evaporation 5.4.1 Four laws of BH thermodynamics 5.4.2 Black hole evaporation 6. Wormholes 6.1 The notion of a wormhole 6.2 A wormhole as a time machine 6.3 Wormholes as solutions to gravitational field equations 6.3.1 Spherically symmetric wormholes — general properties 6.3.2 Wormholes in the anti-Fisher solution 6.3.3 Wormholes with nonminimally coupled scalar fields 6.3.4 Wormhole construction by solving the trace of the Einstein equations 6.3.5 Alternative gravity and vacuum as wormhole supporters 6.3.6 Wormholes with a trapped ghost 6.4 Cylindrical wormholes 6.4.1 Wormhole definitions and existence conditions 6.4.2 Examples of static wormholes 6.4.3 Examples of rotating wormholes 6.5 Observational effects — wormhole astrophysics 7. Stability of spherically symmetric configurations 7.1 Preliminaries 7.2 Perturbation equations 7.2.1 General relations 7.2.2 Master equation 7.2.3 Gauge-invariant perturbations 7.3 Throats, trapped ghosts and stability 7.3.1 Perturbations near a throat 7.3.2 Regular perturbations near a throat 7.3.3 Perturbations near a transition surface Strans (where h(ϕ) = 0) 7.3.4 Transition surfaces and throats 7.4 The stability problem for some particular solutions 7.4.1 Instabilities of the Fisher and anti-Fisher solutions 7.4.2 Black universes 7.4.3 Wormholes with a trapped ghost 7.5 Extensions and related problems Part II. Cosmology 8. Stages of the Universe’s evolution 8.1 The cosmological principle and the Einstein equations 8.1.1 Some solutions for the scale factor 8.2 De Sitter space 8.2.1 Is there real expansion in de Sitter space? 8.3 Inflation 8.4 Post-inflationary stages 8.4.1 Post-inflationary reheating of the Universe 8.4.2 The radiation-dominated stage 8.4.3 The matter-dominated stage 8.4.4 The modern stage of accelerated expansion (secondary inflation) 8.4.5 Future of the Universe — is a Big Rip expected? 8.5 The scale factor in the general case 8.6 Why do we need an inflationary period? 8.6.1 The flatness problem 8.6.2 The initial size of the Universe 8.6.3 Causal connections at inflation and after it 8.7 Basic properties of expanding space 8.7.1 The redshift 8.7.2 The luminosity distance 8.7.3 The velocity of particles in FRW space–time 9. Field dynamics in the inflationary period 9.1 Quadratic inflation 9.2 Quantum fluctuations during inflation 9.2.1 A brief analysis 9.2.2 A detailed consideration 9.2.3 Homogeneous fluctuations 9.3 Influence of massive fields on the process of inflation 9.4 Suppression of vacuum decay by virtual particles 9.5 Geometric approach to inflation 9.5.1 f(R) models of inflation 9.5.2 The Starobinsky model 10. The large-scale structure 10.1 The cosmic microwave background 10.1.1 Classical evolution of quantum fluctuations 10.2 The development of density fluctuations 10.2.1 Density fluctuations in Minkowski space 10.2.2 Density perturbations in the expanding Universe 10.3 The baryonic asymmetry of the Universe 10.3.1 Baryogenesis 10.3.2 Large-scale fluctuations of the baryonic charge 10.4 Primordial black holes as the source of large-scale inhomogeneities 10.4.1 The basic idea 10.4.2 Field fluctuations near an extremum of the potential 10.4.3 Size distribution of the closed walls 10.4.4 Wall formation and collapse 10.4.5 PBH cluster structure — a specific example 10.4.6 Processes inside the PBH clusters 10.4.7 Discussion Part III. Extra dimensions 11. Multidimensional gravity with higher-order derivatives 11.1 Mathematical tools for multidimensional gravity with higher derivatives 11.2 Compact extra dimensions — a brief review 11.2.1 Scalar fields and extra spaces 11.2.2 A Kaluza–Klein model with a single extra dimension 11.2.3 Kaluza–Klein models — the general case 11.3 Multidimensional gravity as the effective theory 11.3.1 f(R) theory 11.3.2 Slow-change approximation — the Einstein frame 11.3.3 The first generalization — a more general form of the Lagrangian 11.3.4 The second generalization — several extra factor spaces 11.3.5 Slow-change approximation — reduction to d0 dimensions 11.4 Possible manifestations of extra dimensions in the modern world 11.4.1 Self-stabilization of an extra space 11.4.2 Relation of the number of extra dimensions and the cosmological constant 11.4.3 Rapid particle creation in the post-inflationary period 11.4.4 Multiple factor spaces and a spatially varying size of the extra dimensions 11.4.5 Funnel solutions — the method of trial functions 11.5 Extra dimensions and inflation 11.5.1 The model 11.5.2 Limits on the model parameters 11.5.3 Slow rolling and all that 11.5.4 Comparison with observations 11.6 Cosmological limits on the parameters of extra dimensions 11.6.1 Limit to the size of extra dimensions 11.6.2 Limit on the D-dimensional Planck mass 11.7 Conclusion 12. The emergence of physical laws 12.1 Fine tuning of the physical parameters 12.1.1 The electron and the properties of the Universe 12.1.2 The carbon level 12.1.3 Slow reactions in stars 12.1.4 Stellar lifetime 12.1.5 Passage through a needle’s eye 12.1.6 It is good time to ask a question — what should an Ultimate Theory look like? 12.1.7 Choosing particles and interactions 12.2 The origin of symmetries and fundamental constants 12.2.1 Fundamental constants and the properties of an extra space 12.2.2 Why is the extra space symmetric? 12.3 Cascade birth of Universes in multidimensional spaces 12.3.1 Simultaneous formation of space–time and the parameters of the theory 12.3.2 Reduction cascades 12.3.3 A step of the cascade in detail 12.3.4 Quadratic gravity as an explicit example 12.3.5 Numerical computations 12.4 Discussion 12.5 Final remark Appendix A.1 A controversy between adherents of multiple universes (M) and an ultimate unified theory (U) A.2 Why do correct theories look elegant? Bibliography Index