دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ابزار ویرایش: 1 نویسندگان: Mikhail Cherniakov سری: ISBN (شابک) : 0470026316, 9780470985748 ناشر: سال نشر: 2008 تعداد صفحات: 418 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Bistatic Radars: Emerging Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رادارهای بیستیک: فناوری نوظهور نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تأثیر فناوری رادار بیستاتیک بر سنجش از راه دور با عبور از آستانه تئوری به تجسم عملی سیستم های بی استاتیک در حال افزایش است. طیف گسترده ای از کاربردهای رادار، از جمله اکتشاف فضایی، دفاع، حمل و نقل، هوافضا و هواشناسی، انگیزه دائمی برای این پیشرفت فراهم می کند. این کتاب به مطالعات پیشرفته تر در مورد رادار بیستاتیک اختصاص یافته است که در حال حاضر موضوع فعالیت های تحقیقاتی و توسعه فشرده است. این کتاب با مشارکت متخصصان برجسته در زمینه تحقیقات رادار بیستاتیک، آخرین پیشرفت ها در این زمینه را با تمرکز بر روی گردآوری می کند. رادار دیافراگم مصنوعی bistatic (BSAR) و سیستمهای رادار bistatic غیرفعال (PBRS). در این دو حوزه، متن به توپولوژیهای اصلی BSAR میپردازد: BSAR فضابرد، BSAR هوابرد و BSAR فضایی سطحی. علاقه و کاربردهای عملی PBRS را تحلیل می کند؛ فناوری BSAR غیرفعال را معرفی می کند. تحقیقات سیستم های مورد استفاده در تشخیص و ردیابی هواپیما و سنجش از دور راداری غیرفعال یونوسفر و جو فوقانی را پوشش می دهد. رادار Bistatic: فناوری نوظهور منبع ارزشمندی برای مهندسین و محققانی است که در طراحی و اجرای سیستمهای رادار پیشرفته بیستاتیک در هوا فضا، ارتباطات، دفاع، حملونقل و هواشناسی نقش دارند. در ادامه از Bistatic Radar: Principles and Practice، همچنین مرجعی جامع در مورد آخرین تحقیقات برای دانشجویان کارشناسی ارشد است که دوره های تخصصی فناوری رادار را می گذرانند.
The impact of bistatic radar technology on remote sensing is increasing as bistatic systems cross the theoretical threshold into practical embodiment. The wide spectrum of radar applications, including space exploration, defence, transport, aerospace, and meteorology, provides persistent impetus for this progress. This book is dedicated to the more advanced studies in bistatic radar which are currently the subject of intensive research activity and development.With contributions from the leading experts in the field of bistatic radar research, this book collates the latest developments in the field focusing particularly on bistatic synthetic aperture radar (BSAR) and passive bistatic radar systems (PBRS). Within these two areas the text:addresses the main BSAR topologies: spaceborne BSAR, airborne BSAR and space-surface BSAR; analyses the resurgent interest in, and practical applications of, PBRS;introduces passive BSAR technology; covers research of systems used in aircraft detection and tracking, and passive radar remote sensing of the ionosphere and the upper atmosphere. Bistatic Radar: Emerging Technology is an invaluable resource for practising engineers and researchers involved in the design and implementation of advanced bistatic radar systems in aerospace, communications, defence, transport and meteorology. Following on from Bistatic Radar: Principles and Practice it is also a comprehensive reference on the latest research for postgraduate students taking specialist courses in radar technology.
Bistatic Radar......Page 3
Contents......Page 7
List of Contributors......Page 13
Preface......Page 15
1.1 Introduction......Page 17
1.2 BSAR Basic Geometry and Resolutions......Page 18
1.3.1 Evaluation of the BRCS of Natural and Manmade Targets by Means of Multiangle Bistatic SAR Observations......Page 24
1.3.2 Acquisition of Terrain Elevation and Slope by Means of Range and Bistatic Scattering Measurements......Page 25
1.3.4 Stereoradargrammetric Applications Due to the Large Antenna Separation Involved......Page 26
1.3.6 High-Resolution Measurements of Components of Sea-Wave Spectra......Page 27
1.3.7 Bistatic SAR Data Processing......Page 28
1.3.8 Position and Velocity Measurements......Page 29
1.3.9 Bistatic Stereoradargrammetry......Page 31
1.4 Summary......Page 36
Variables......Page 37
References......Page 38
2.1 Introduction......Page 43
2.2.1 Basic Trade-offs in Spaceborne BSAR Configurations......Page 45
2.2.2 Impact of Bistatic Observation on Mission and System Design......Page 48
2.2.3 Payload–Bus Performance Trade-off......Page 51
2.2.4 BSAR Missions Functional/Technological Key Issues......Page 56
2.3.1 BSAR Orbit Design......Page 58
2.3.2 BSAR Attitude and Antenna Pointing Design......Page 65
Variables......Page 76
References......Page 78
3.1 Introduction......Page 83
3.2 Bissat Scientific Rationale and Technical Approach......Page 84
3.3.2 System Architecture......Page 86
3.3.3 Payload Operational Modes......Page 87
3.3.4 Signal Synchronization......Page 88
3.3.5 Science Data Handling and Telecommunication......Page 89
3.3.7 Overall Budgets......Page 91
3.4 Orbit Design......Page 92
3.5 Attitude Design and Radar Pointing Design......Page 94
3.6 Radar Performance......Page 102
Abbreviations......Page 107
References......Page 108
4.1 Introduction......Page 111
4.2 Spaceborne SAR Interferometry......Page 113
4.3.1 Satellite Formation......Page 117
4.3.2 Phase and Time Synchronization......Page 122
4.3.3 Operational Modes for Bi- and Multistatic SAR Systems......Page 128
4.4.1 TanDEM-X......Page 131
4.4.2 Semi-active TerraSAR-L Cartwheel Configuration......Page 144
4.5.1 SAR Tomography......Page 153
4.5.2 Ambiguity Suppression and Resolution Enhancement......Page 155
4.5.3 Multistatic SAR Imaging......Page 158
4.5.4 Along-Track Interferometry and Moving Object Indication......Page 159
4.5.5 Multibaseline Change Detection......Page 160
4.6 Discussion......Page 161
Abbreviations......Page 163
Variables......Page 164
References......Page 166
5.1 Bistatic Airborne SAR Objectives......Page 175
5.2 Airborne Bistatic SAR Configurations......Page 176
5.2.1 Time-Invariant Configurations......Page 177
5.2.2 General Bistatic Configurations......Page 178
5.2.4 Examples of Resolution Performances......Page 179
5.3.1 Changes in the SAR Synthesis Process......Page 182
5.3.2 Motion Compensation Issues......Page 193
5.3.3 Geometrical Distortion Model for Airborne Bistatic SAR Images......Page 201
5.3.4 Miscellaneous Processing Issues......Page 204
5.4.1 Michigan BSAR Experiment......Page 213
5.5 The ONERA-DLR Bistatic Airborne SAR Campaign......Page 214
5.5.1 Preparing the Systems......Page 215
5.5.2 The Campaign......Page 221
5.5.3 Processing the Bistatic Images......Page 222
5.5.4 Calibration of the Bistatic Images......Page 223
5.6.1 Quasi-Monostatic versus Monostatic......Page 224
Variables Used in Section 5.3......Page 226
References......Page 227
6.1 System Overview......Page 231
6.2 Spatial Resolution......Page 233
6.2.1 Monostatic SAR Ambiguity Function......Page 234
6.2.2 Resolution in BSAR......Page 239
6.3.1 SS-BSAR Ambiguity Function......Page 244
6.4 SS-BSAR Resolution Examples......Page 253
Variables......Page 259
References......Page 261
7 Passive Bistatic Radar Systems......Page 263
7.1 PBR Development......Page 264
7.2.1 The Bistatic Radar Equation......Page 267
7.2.2 Target Bistatic Radar Cross-Section......Page 269
7.2.3 Receiver Noise Figure......Page 270
7.2.4 Effective Bandwidth and Integration Gain......Page 271
7.2.5 Performance Prediction......Page 272
7.3.1 Narrowband PBR Processing......Page 276
7.3.2 Wideband PBR Processing......Page 284
7.3.3 Multistatic PBR......Page 289
7.4.1 Introduction......Page 290
7.4.2 Range and Doppler Resolution – ‘Self-Ambiguity’......Page 291
7.4.3 Range and Doppler Resolution – ‘Bistatic and Multistatic Ambiguity’......Page 299
7.4.4 Influence of Waveform Properties on Design and Performance......Page 301
7.4.5 Conclusions of Waveform Properties......Page 303
7.5.2 Expected System Performance......Page 304
7.5.3 Data Collection......Page 307
7.5.4 Adaptive Filtering of the Signal......Page 308
7.5.5 Target Detection by Cross-Correlation......Page 311
7.5.6 Long-Integration Time......Page 312
7.5.7 Use of Decimation to Improve Efficiency......Page 315
7.5.8 An FMCW-Like Approach......Page 317
7.5.9 Constant False Alarm Rate (CFAR) Detection......Page 319
7.5.11 Plot-to-Plot Association......Page 320
7.5.13 Plot-to-Target Association (Multiple Illuminator Case)......Page 322
7.5.14 Verification of System Performance......Page 324
Abbreviations......Page 325
Variables......Page 326
References......Page 327
8.1 Introduction......Page 331
8.2 DTV-T Signal Specification......Page 333
8.2.2 Continuous Pilot Carrier......Page 334
8.2.3 Transport Parameter Signalling Carrier......Page 335
8.3 DTV-T Signal Ambiguity Function......Page 336
8.3.1 The DTV-T Signal Model......Page 337
8.4 Impact of DTV-T Signal Deterministic Components on the Signal......Page 338
8.4.2 Complex Envelope Spectrum ( =0)......Page 340
8.4.4 Experimental Confirmation of the Modelling Results......Page 341
8.5.1 Receiver Stricture......Page 343
8.5.2 Signal Pre-processing in the Receiver......Page 344
8.5.3 Pilot Carrier Equalization......Page 346
8.5.4 Pilot Carrier Filtering......Page 348
8.6 Summary......Page 351
Variables......Page 352
References......Page 353
9 Passive Bistatic SAR with GNSS Transmitters......Page 355
9.1 Global Navigation Satellite Systems......Page 356
9.2 Power Budget Analysis......Page 359
9.3.2 Analysis of the SIR Improvement Factor......Page 361
9.3.3 Simulation Results......Page 367
9.5 Experimental Study of the SS-BSAR......Page 370
9.6 Summary......Page 374
Variables......Page 375
References......Page 376
10.1 Introduction......Page 379
10.2 The Ionosphere and Upper Atmosphere......Page 381
10.2.1 Gross Structure of the Ionosphere......Page 382
10.2.3 Fine Structure, Field-Aligned Density Irregularities......Page 386
10.2.4 Radio Interaction with the Ionosphere......Page 389
10.3.2 The Manastash Ridge Radar......Page 394
Abbreviations......Page 399
Variables......Page 400
References......Page 401
Index......Page 405
Color Plate......Page 411