دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Seventh ed.]
نویسندگان: John O. Bird
سری:
ISBN (شابک) : 9780367672225, 0367672243
ناشر:
سال نشر: 2022
تعداد صفحات: [931]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 130 Mb
در صورت تبدیل فایل کتاب Bird's electrical circuit theory and technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه و فناوری مدار الکتریکی پرنده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
"این کتاب درسی مقطع کارشناسی و پیشرفته شامل 850 نمونه کار شده است. اکنون با باتری های شیشه ای، تغییرات آب و هوایی و آینده تولید برق. وب سایت همراه آن شامل تست های چند گزینه ای، آزمایش های آزمایشگاهی، و 1400 سوال و راه حل است"--
"This undergraduate and advanced pre-degree textbook includes 850 worked examples. Now with glass batteries, climate change and the future of electricity production. Its companion website includes multiple choice tests, laboratory experiments, and 1400 questions and solutions"--
Cover Half Title Series Page Title Page Copyright Page Dedication Contents Preface Section 1: Revision of some basic mathematics 1. Some mathematics revision 1.1. Use of calculator and evaluating formulae 1.2. Fractions 1.3. Percentages 1.4. Ratio and proportion 1.5. Laws of indices 1.6. Brackets 1.7. Solving simple equations 1.8. Transposing formulae 1.9. Solving simultaneous equations 2. Further mathematics revision 2.1. Radians and degrees 2.2. Measurement of angles 2.3. Trigonometry revision 2.4. Logarithms and exponentials 2.5. Straight line graphs 2.6. Gradients, intercepts and equation of a graph 2.7. Practical straight line graphs 2.8. Calculating areas of common shapes Main formulae for Section1 Revision of some basic mathematics Section 2: Basic electrical engineering principles 3. Units associated with basic electrical quantities 3.1. SI units 3.2. Charge 3.3. Force 3.4. Work 3.5. Power 3.6. Electrical potential and e.m.f. 3.7. Resistance and conductance 3.8. Electrical power and energy 3.9. Summary of terms, units and their symbols 4. An introduction to electric circuit 4.1. Standard symbols for electrical components 4.2. Electric current and quantity of electricity 4.3. Potential difference and resistance 4.4. Basic electrical measuring instruments 4.5. Linear and non-linear devices 4.6. Ohm’s law 4.7. Multiples and sub-multiples 4.8. Conductors and insulators 4.9. Electrical power and energy 4.10. Main effects of electric current 4.11. Fuses 4.12. Insulation and the dangers of constant high current flow Practical laboratory experiment:Ohm’slaw Which light bulb to choose? Watts or lumens! 5. Resistance variation 5.1. Resistor construction 5.2. Resistance and resistivity 5.3. Temperature coefficient of resistance 5.4. Resistor colour coding and ohmic values 6. Batteries and alternative sources of energy 6.1. Introduction to batteries 6.2. Some chemical effects of electricity 6.3. The simple cell 6.4. Corrosion 6.5. e.m.f. and internal resistance of a cell 6.6. Primary cells 6.7. Secondary cells 6.8. Lithium-ion batteries 6.9. Cell capacity 6.10. Safe disposal of batteries 6.11. Fuel cells 6.12. Alternative and renewable energy sources 6.13. Solar energy 6.14. Glass batteries Revision Test 1 What uses the most energy in your home? 7. Series and parallel networks 7.1. Series circuits 7.2. Potential divider 7.3. Parallel networks 7.4. Current division 7.5. Loading effect 7.6. Potentiometers and rheostats 7.7. Relative and absolute voltages 7.8. Earth potential and short circuits 7.9. Wiring lamps in series and in parallel Practical laboratory experiment: Series-parallel d.c.circuit 8. Capacitors and capacitance 8.1. Introduction to capacitors 8.2. Electrostatic field 8.3. Electric field strength 8.4. Capacitance 8.5. Capacitors 8.6. Electric flux density 8.7. Permittivity 8.8. The parallel plate capacitor 8.9. Capacitors connected in parallel and series 8.10. Dielectric strength 8.11. Energy stored 8.12. Practical types of capacitor 8.13. Supercapacitors 8.14. Discharging capacitors 9. Magnetic circuits 9.1. Introduction to magnetism and magnetic circuits 9.2. Magnetic fields 9.3. Magnetic flux and flux density 9.4. Magnetomotive force and magnetic field strength 9.5. Permeability and B-H curves 9.6. Reluctance 9.7. Composite series magnetic circuits 9.8. Comparison between electrical and magnetic quantities 9.9. Hysteresis and hysteresis loss Revision Test 2 Some interesting facts about electricity 10. Electromagnetism 10.1. Magnetic field due to an electric current 10.2. Electromagnets 10.3. Force on a current-carrying conductor 10.4. Principle of operation of a simple d.c. motor 10.5. Principle of operation of a moving-coil instrument 10.6. Force on a charge 11. Electromagnetic induction 11.1. Introduction to electromagnetic induction 11.2. Laws of electromagnetic induction 11.3. Rotation of a loop in a magnetic field 11.4. Inductance 11.5. Inductors 11.6. Energy stored 11.7. Inductance of a coil 11.8. Mutual inductance 12. Electrical measuring instruments and measurements 12.1. Introduction 12.2. Analogue instruments 12.3. Shunts and multipliers 12.4. Electronic instruments 12.5. The ohmmeter 12.6. Multimeters 12.7. Wattmeters 12.8. Instrument ‘loading’ effect 12.9. The oscilloscope 12.10. Virtual test and measuring instruments 12.11. Virtual digital storage oscilloscopes 12.12. Waveform harmonics 12.13. Logarithmic ratios 12.14. Null method of measurement 12.15. Wheatstone bridge 12.16. d.c. potentiometer 12.17. a.c. bridges 12.18. Measurement errors Where is energy wasted in the home? 13. Semiconductor diodes 13.1. Types of material 13.2. Semiconductor materials 13.3. Conduction in semiconductor materials 13.4. The p–n junction 13.5. Forward and reverse bias 13.6. Semiconductor diodes 13.7. Characteristics and maximum ratings 13.8. Rectification 13.9. Zener diodes 13.10. Silicon controlled rectifiers 13.11. Light emitting diodes 13.12. Varactor diodes 13.13. Schottky diodes 14. Transistors 14.1. Transistor classification 14.2. Bipolar junction transistors (BJTs) 14.3. Transistor action 14.4. Leakage current 14.5. Bias and current flow configurations 14.6. Transistor operating 14.7. Bipolar transistor characteristics 14.8. Transistor parameters 14.9. Current gain 14.10. Typical BJT characteristics and maximum ratings 14.11. Field effect transistors 14.12. Field effect transistor characteristics 14.13. Typical FET characteristics and maximum ratings 14.14. Transistor amplifiers 14.15. Load lines Revision Test 3 Main formulae for Section 2Basic electrical and electronic principles Electrical safety is essential–electricity KILLS…! Section 3: Electrical principles and technology 15. d.c. circuit theory 15.1. Introduction 15.2. Kirchhoff’s laws 15.3. The superposition theorem 15.4. General d.c. circuit theory 15.5. Thévenin’s theorem 15.6. Constant-current source 15.7. Norton’s theorem 15.8. Thévenin and Norton equivalent networks 15.9. Maximum power transfer theorem Practical laboatory experiment: Superposition theorem Practical laboratory experiment: Thévenin’s theorem 16. Alternating voltages and currents 16.1. Introduction 16.2. The a.c. generator 16.3. Waveforms 16.4. a.c. values 16.5. Electrical safety – insulation and fuses 16.6. The equation of a sinusoidal waveform 16.7. Combination of waveforms 16.8. Rectification 16.9. Smoothing of the rectified output waveform Practical laboratory experiment: Use of an oscilloscope to measure voltage,frequency and phase Practical laboratory experiment: Use of an oscilloscope witha bridge rectifier circuit Revision Test 4 Electric shock! 17. Single-phase series a.c. circuits 17.1. Purely resistive a.c. circuit 17.2. Purely inductive a.c. circuit 17.3. Purely capacitive a.c. circuit 17.4. R-L series a.c. circuit 17.5. R-C series a.c. circuit 17.6. R-L-C series a.c. circuit 17.7. Series resonance 17.8. Q-factor 17.9. Bandwidth and selectivity 17.10. Power in a.c. circuits 17.11. Power triangle and power factor Practical laboratory experiment: Measurement of the inductance of a coil Practical laboratory experiment: Series a.c. circuit and resonance 18. Single-phase parallel a.c. circuits 18.1. Introduction 18.2. R-L parallel a.c. circuit 18.3. R-C parallel a.c. circuit 18.4. L-C parallel a.c. circuit 18.5. LR-C parallel a.c. circuit 18.6. Parallel resonance and Q-factor 18.7. Power factor improvement Practical laboratory experiment: Parallel a.c. circuit and resonance Why are relays so important in electrical circuits? 19. d.c. transients 19.1. Introduction 19.2. Charging a capacitor 19.3. Time constant for a C-R circuit 19.4. Transient curves for a C-R circuit 19.5. Discharging a capacitor 19.6. Camera flash 19.7. Current growth in an L-R circuit 19.8. Time constant for an 19.9. Transient curves for an L-R circuit 19.10. Current decay in an L-R circuit 19.11. Switching inductive circuits 19.12. The effect of time constant on a rectangular waveform Practical laboratory experiment Charging and discharging a capacitor 20. Operational amplifiers 20.1. Introduction to operational amplifiers 20.2. Some op amp parameters 20.3. Op amp inverting amplifier 20.4. Op amp non-inverting amplifier 20.5. Op amp voltage-follower 20.6. Op amp summing amplifier 20.7. Op amp voltage comparator 20.8. Op amp integrator 20.9. Op amp differential amplifier 20.10. Digital to analogue (D/A) conversion 20.11. Analogue to digital (A/D) conversion Revision Test 5 Are you competent to do electrical work? 21. Global climate change and the future of electricity production 21.1. Introduction 21.2. Global climate change 21.3. Evidence of rapid climate change 21.4. Consequences of global climate change 21.5. How does electric power production affect the global climate? 21.6. Generating electrical power using coal 21.7. Generating electrical power using oil 21.8. Generating electrical power using natural gas 21.9. Generating electrical power using nuclear energy 21.10. Generating electrical power using hydro power 21.11. Generating electrical power using pumped storage 21.12. Generating electrical power using wind 21.13. Generating electrical power using tidal power 21.14. Generating electrical power using biomass 21.15. Generating electrical power using solar energy 21.16. Harnessing the power of wind, tide and sun on an ‘energy island’ – a future possibility? 22. Three-phase systems 22.1. Introduction 22.2. Three-phase supply 22.3. Star connection 22.4. Delta connection 22.5. Power in three-phase systems 22.6. Measurement of power in three-phase systems 22.7. Comparison of star and delta connections 22.8. Advantages of three-phase systems 23. Transformers 23.1. Introduction 23.2. Transformer principle of operation 23.3. Transformer no-load phasor diagram 23.4. e.m.f. equation of a transformer 23.5. Transformer on-load phasor diagram 23.6. Transformer construction 23.7. Equivalent circuit of a transformer 23.8. Regulation of a transformer 23.9. Transformer losses and efficiency 23.10. Resistance matching 23.11. Auto transformers 23.12. Isolating transformers 23.13. Three-phase transformers 23.14. Current transformers 23.15. Voltage transformers Revision Test 6 What is the difference between electrical and electronic devices? 24. d.c. machines 24.1. Introduction 24.2. The action of a commutator 24.3. d.c. machine construction 24.4. Shunt, series and compound windings 24.5. e.m.f. generated in an armature winding 24.6. d.c. generators 24.7. Types of d.c. generator and their characteristics 24.8. d.c. machine losses 24.9. Efficiency of a d.c. generator 24.10. d.c. motors 24.11. Torque of a d.c. machine 24.12. Types of d.c. motor and their characteristics 24.13. The efficiency of a d.c. motor 24.14. d.c. motor starter 24.15. Speed control of d.c. motors 24.16. Motor cooling 25. Three-phase induction motors 25.1. Introduction 25.2. Production of a rotating magnetic field 25.3. Synchronous speed 25.4. Construction of a three-phase induction motor 25.5. Principle of operation of a three-phase induction motor 25.6. Slip 25.7. Rotor e.m.f. and frequency 25.8. Rotor impedance and current 25.9. Rotor copper loss 25.10. Induction motor losses and efficiency 25.11. Torque equation for an induction motor 25.12. Induction motor torque–speed characteristics 25.13. Starting methods for induction motors 25.14. Advantages of squirrel-cage induction motors 25.15. Advantages of wound rotor induction motors 25.16. Double cage induction motor 25.17. Uses of three-phase induction motors Revision Test 7 Main formulae for Section 3 Electrical principles and technology What does an engineer do? Section 4: Advanced circuit theory and technology 26. Revision of complex numbers 26.1. Introduction 26.2. Operations involving Cartesian complex numbers 26.3. Complex equations 26.4. The polar form of a complex number 26.5. Multiplication and division using complex numbers in polar form 26.6. De Moivre’s theorem – powers and roots of complex numbers 27. Application of complex numbers to series a.c. circuits 27.1. Introduction 27.2. Series a.c. circuits 27.3. Further worked problems on series a.c. circuits 28. Application of complex numbers to parallel a.c. networks 28.1. Introduction 28.2. Admittance, conductance and susceptance 28.3. Parallel a.c. networks 28.4. Further worked problems on parallel a.c. networks 29. Power in a.c. circuits 29.1. Introduction 29.2. Determination of power in a.c. circuits 29.3. Power triangle and power factor 29.4. Use of complex numbers for determination of power 29.5. Power factor improvement Revision Test 8 The war of the currents: AC v DC 30. a.c. bridges 30.1. Introduction 30.2. Balance conditions for an a.c. bridge 30.3. Types of a.c. bridge circuit 30.4. Worked problems on a.c. bridges 31. Series resonance and Q-factor 31.1. Introduction 31.2. Series resonance 31.3. Q-factor 31.4. Voltage magnification 31.5. Q-factors in series 31.6. Bandwidth 31.7. Small deviations from directly from the resonant frequency 32. Parallel resonance and Q-factor 32.1. Introduction 32.2. The LR-C parallel network 32.3. Dynamic resistance 32.4. The LR-CR parallel network 32.5. Q-factor in a parallel network 32.6. Further worked problems on parallel resonance and Q-factor Revision Test 9 What every day items in the home use motors? 33. Introduction to network analysis 33.1. Introduction 33.2. Solution of simultaneous equations using determinants 33.3. Network analysis using Kirchhoff’s* laws 34. Mesh-current and nodal analysis 34.1. Mesh-current analysis 34.2. Nodal analysis 35. The superposition theorem 35.1. Introduction 35.2. Using the superposition theorem 35.3. Further worked problems on the superposition theorem 36. Thévenin’s and Norton’s theorems 36.1. Introduction 36.2. Thévenin’s theorem 36.3. Further worked problems on Thévenin’s theorem 36.4. Norton’s theorem 36.5. Thévenin and Norton equivalent networks Revision Test 10 How does a car electrical system work? 37. Delta–star and star–delta transformations 37.1. Introduction 37.2. Delta and star connections 37.3. Delta–star transformation 37.4. Star–delta transformation 38. Maximum power transfer theorems and impedance matching 38.1. Maximum power transfer theorems 38.2. Impedance matching Revision Test 11 HSE and electrical safety 39. Complex waveforms 39.1. Introduction 39.2. The general equation for a complex waveform 39.3. Harmonic synthesis 39.4. Fourier series of periodic and non-periodic functions 39.5. Even and odd functions and Fourier series over any range 39.6. r.m.s. value, mean value and the form factor of a complex wave 39.7. Power associated with complex waves 39.8. Harmonics in single-phase circuits 39.9. Further worked problems on harmonics in single-phase circuits 39.10. Resonance due to harmonics 39.11. Sources of harmonics 40. A numerical method of harmonic analysis 40.1. Introduction 40.2. Harmonic analysis on data given in tabular or graphical form 40.3. Complex waveform considerations 41. Magnetic materials 41.1. Revision of terms and units used with magnetic circuits 41.2. Magnetic properties of materials 41.3. Hysteresis and hysteresis loss 41.4. Eddy current loss 41.5. Separation of hysteresis and eddy current losses 41.6. Non-permanent magnetic materials 41.7. Permanent magnetic materials Revision Test 12 What is electroplating? 42. Dielectrics and dielectric loss 42.1. Electric fields, capacitance and permittivity 42.2. Polarisation 42.3. Dielectric strength 42.4. Thermal effects 42.5. Mechanical properties 42.6. Types of practical capacitor 42.7. Liquid dielectrics and gas insulation 42.8. Dielectric loss and loss angle 43. Field theory 43.1. Field plotting by curvilinear squares 43.2. Capacitance between concentric cylinders 43.3. Capacitance of an isolated twin line 43.4. Energy stored in an electric field 43.5. Induced e.m.f. and inductance 43.6. Inductance of a concentric cylinder (or coaxial cable) 43.7. Inductance of an isolated twin line 43.8. Energy stored in an electromagnetic field 44. Attenuators 44.1. Introduction 44.2. Characteristic impedance 44.3. Logarithmic ratios 44.4. Symmetrical T- and pi-attenuators 44.5. Insertion loss 44.6. Asymmetrical T- and pi-sections 44.7. The L-section attenuator 44.8. Two-port networks in cascade 44.9. ABCD parameters 44.10. ABCD parameters for networks 44.11. Characteristic impedance in terms of ABCD parameters Revision Test 13 Could we live without electricity? 45. Filter networks 45.1. Introduction 45.2. Basic types of filter sections 45.3. The characteristic impedance and the attenuation of filter sections 45.4. Ladder networks 45.5. Low-pass filter sections 45.6. High-pass filter sections 45.7. Propagation coefficient and time delay in filter sections 45.8. ’m-derived’ filter sections 45.9. Practical composite filters 46. Magnetically coupled circuits 46.1. Introduction 46.2. Self-inductance 46.3. Mutual inductance 46.4. Coupling coefficient 46.5. Coils connected in series 46.6. Coupled circuits 46.7. Dot rule for coupled circuits 47. Transmission lines 47.1. Introduction 47.2. Transmission line primary constants 47.3. Phase delay, wavelength and velocity of propagation 47.4. Current and voltage relationships 47.5. Characteristic impedance and propagation coefficient in terms of the primary constants 47.6. Distortion on transmission lines 47.7. Wave reflection and the reflection coefficient 47.8. Standing waves and the standing-wave ratio 48. Transients and Laplace transforms 48.1. Introduction 48.2. Response of R-C series circuit to a step input 48.3. Response of R-L series circuit to a step input 48.4. L-R-C series circuit response 48.5. Introduction to Laplace transforms 48.6. Inverse Laplace transforms and the solution of differential equations 48.7. Laplace transform analysis 48.8. L-R-C directly from the circuit diagram Laplace transforms 48.9. Initial conditions Revision Test 14 Main formulae for Section 4 Advanced circuit theory and technology Ten trending technologies Section 5: General reference Standard electrical quantities – their symbols and units Greek alphabet Common prefixes Resistor colour coding and ohmic values Future technology snippets Answers to Practice Exercises Index