دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Yoshinobu Onuma. Patrick W.J.C. Serruys
سری:
ISBN (شابک) : 1498779743, 1498779778
ناشر: CRC Press
سال نشر: 2017
تعداد صفحات: 552
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 140 مگابایت
در صورت تبدیل فایل کتاب Bioresorbable Scaffolds: From Basic Concept to Clinical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب داربست های قابل جذب زیستی: از مفهوم اولیه تا کاربردهای بالینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر روی داربست قابل جذب عروق کرونر، یک درمان مداخله ای جدید برای بیماری عروق کرونر، متمایز از استنت فلزی دائمی تمرکز دارد. این کتاب یک نمای کلی از فناوری شامل مطالعات غیر بالینی و شواهد بالینی ارائه می دهد تا به پزشکان کمک کند کاربرد مناسب فناوری و تکنیک های بهینه کاشت را درک کنند. اصول اولیه داربست های قابل جذب زیستی را پوشش می دهد. نتایج تست نیمکت؛ مطالعات پیش بالینی؛ شواهد بالینی؛ و نکات و ترفندهای کاشت.
This book focuses on the coronary bioresorbable scaffold, a new interventional treatment for coronary artery disease, differentiated from a permanent metallic stent. The book provides an overview of the technology including non-clinical studies and clinical evidences in order to help clinicians understand the appropriate application of the technology and the optimal techniques of implantation. It covers the basics of bioresorbable scaffolds; bench test results; preclinical studies; clinical evidences; and tips and tricks of implantation.
Content: Table of ContentsSection 1: Introduction1.1- Early development of bioresorbable scaffoldPatrick W. SerruysSection 2: Principles of bioresorption, vascular application2.1- Degradable, biodegradable and bioresorbable polymers for time-limited therapyMichel Vert2.2- Lactic acid-based polymers in depthMichel Vert and Antoine Lafont2.3- Scaffold processingJack Scanlon2.4- Basics of biodegradation of magnesiumMichael Haude, Daniel Lootz, Hubertus Degen and Matthias Epple2.5- Basics of biodegradation of iron scaffoldDeyuan Zhang and Runlin GaoSection 3: From bench test to preclinical assessment3.1- Unlocking scaffold mechanical propertiesJack Scanlon, Yoshinobu Onuma, Patrick W. Serruys and Joseph Deitzel3.2- Bench testing for polymeric bioresorbable scaffoldsJohn A. Ormiston, Bruce Webber, Janarthanan Sathananthan, Pau Medran-Gracia, Susann Beier and Mark WI Webster3.3- Bench test for magnesium scaffoldDaniel Lootz, Wolfram Schmidt, Peter Behrens, Klaus-Peter Schmitz, Michael Haude and Ron Waksman3.4- Simulation of flow and shear stressNicolas Foin, Ryo Torii, Renick Darren Lee, Alessio Mattesini, Carlo Di Mario, Philip Wong, Erhan Tenekecioglu, Tom Crake, Christos Bourantas and Patrick W. Serruys3.5- Preclinical assessment of bioresorbable scaffolds and regulatory implicationTobias Koppara, Eric Wittchow, Renu Virmani and Michael JonerSection 4: Lesson learned from preclinical assessment4.1- PLA scaffoldKazuyuki Yahagi, Sho Torii, Erica Pacheco, Frank D. Kolodgie, Aloke V. Finn and Renu Virmani4.2- IronRunlin Gao, Deyuan Zhang, Hong Qiu, Chao Wu, Ying Xia and Gui Zhangã Section 5: Imaging to evaluate the bioresorbable scaffold: A corelab perspective, methodology of measurement and assessment5.1- Quantative coronary angiography of bioresorbable vascular scaffold: a corelab perspectiveYohei Sotomi, Patrick W. Serruys and Yoshinobu Onuma5.2- Assessment of bioresorbable scaffolds by IVUS: echogenicity, virtual histology and palpographyCarlos M. Campos, Patrick W. Serruys and Hector M. Garcia-Garcia5.3- Optical coherence tomography analysis vascular scaffold in comparison with metallic stents: a corelab perspectiveYohei Sotomi, Pannipa Suwannasom, Jouke Dijkstra, Carlos Collet, Shimpei Nakatani, Patrick W. Serruys, Yoshinobu Onuma5.4- Non-invasive coronary tomography analysis after bioresorbable scaffold implantationCarlos Collet, Koen Nieman, Patrick W. Serruys and Yoshinobu Onuma5.5- Angiography is sufficientJ Ribamar Costa, Jr. and Alexandre Abizaid5.6- Intravascular ultrasound is a must in bioresorbable scaffold implantationHiroyoshi Kawamoto, Neil Ruparelia and Antonio Colombo5.7- OCT is the way to goJiang Ming Fam, Nienke Simone van Ditzhuijzen, Jors van Sjide, Bu Chan Zhang, Antonios Karanasos, Robert-Jan van Geuns and Evelyn Regar5.8- Imaging to evaluate the bioresorbable scaffold. Clinician\'s perspective: I need both (IVUS and OCT)Josep Gomez-Lara and Antoni Serra5.9- Multislice computed tomography as a modality of follow-upAntonio L. Bartorelli, Daniele Andreini, Simona Espejo and Manuel PanSection 6: Clinical evidence of randomised and non-randomised trials: personal perspective6.1- What are appropriate clinical endpoints? From device failure assessment to angina evaluationMaik J. Grundeken, Yoshinobu Onuma and Patrick W. Serruys6.2- Angina reduction after BRS implantation: correlation with changes in coronary haemodynamicsNick E.J. West, Adam J. Brown and Stephen P. Hoole6.3- Comparison of everolimus eluting bioresorbable scaffolds with everolimus eluting metallic stents for treatment of coronary artery stenosis: Three-year follow-up of the Absorb II randomized trialCarlos Collet et al.6.4- The ABSORB China trialRunlin Gao6.5- ABSORB JapanTakeshi Kimura6.6- What have we learned from meta-analysis of 1 year outcomes with the Absorb bioresorbable scaffold in patients with coronary heart diseaseYohei Sotomi, Carlos Collet, Takeshi Kimura, Runlin Gao, Dean J. Kereiakes, Gregg W. Stone, Stephen G. Ellis, Yoshinobu Onuma and Patrick W. Serruys6.7- Summary of investigator-driven registries on absorb bioresorbable vascular scaffoldsAnna Franzone, Raffaele Piccolo and Stephen Windecker6.8- Investigator-driven randomised trialsDaniele Giacoppo, Roisin Colleran and Adnan Kastrati6.9- The DESolve scaffoldStefan Verheye, Nagarajan Ramesh, Lynn Morrison and Sara Toyloy6.10- Results of clinical trials with BIOTRONIK magnesium scaffoldsMichael Haude, Daniel Lootz, Raimund Erbel, Jacques Koolen and Ron Waksman6.11- The REVA medical program: from ReZolve (R) to Fantom (R)Alexandre Abizaid and J. Ribamar Costa Jr.6.12- The Amaranth\'s bioresorbable vascular scaffold technologyAlaide Chieffo, Juan F. Granada and Antonio Colombo6.13- The mirage microfiber sirolimus eluting coronary scaffoldTeguh Santoso, Liew Houng Bang, Ricardo Costa, Daniel Chamie, Solomon Su, Alexandre Abizaid, Yoshinobu Onuma and Patrick W. Serruys6.14- The Igaki-Tamai stent: the legacy of the work of Hideo TamaiSoji Nishio, Kunihiko Kosuga, Eisho Kyo, Takafumi Tsuji, Masaharu Okada, Shinsaku Takeda, Yasutaka Inuzuka, Tatsuhiko Hata, Yuzo Takeuchi, Junya Seki and Shigeru IkeguchiSection 7: Clinical evidence in specific patient subsets: personal perspective7.1- Left main interventions with BRSBert Everaert, Piera Capranzano, Corrado Tamburino, Ashok Seth and Robert-Jan van Geuns7.2- Bioresorbable scaffolds in bifurcationsFilippo Fingini, Hiroyoshi Kawamoto and Azeem Latib7.3- BVS in chronic total occlusions: clinical evidence, tips and tricksAntonio Serra7.4- Bioresorbable scaffolds in diffuse diseaseNeil Ruparelia, Hiroyoshi Kawamoto and Antonio Colombo7.5- Bioresorbable scaffolds in mulitvessel coronary diseaseR.P. Kraak, Maik J. Grundeken and J.J Wykrzykowska7.6- Bioresorbable coronary scaffolds in non-St elevation acute coronary syndromesCharis Mamilou and Tommaso Gori7.7- Bioresorbable vascular scaffold in ST-segment elevation myocardial infarction: clinical evidence, tips and tricksGiuseppe Giacchi and Manel Sabate7.8- Bioresorbable scaffolds for treating coronary artery disease in patients with diabetes mellitusAyyaz Sultan, Takeshi Muramatsu and Javaid Iqbal7.9- BRS in calcified lesionsAshok Seth7.10- BRS textbook: invasive sealing of vulnerable, high-risk lesionsChristos Bourantas, Ryo Torri, Nicolas Foin, Ajay Suri, Erhan Tenekecioglu, Vikas Thondapu, Tom Crake, Peter Barlis and Patrick W. SerruysSection 8: Complications (incidence, diagnosis, potential mechanisms and treatment)8.1- Acute and subacute scaffold thrombosisDavide Capodanno8.2- Late and very late scaffold thrombosisAntonios Karanasos, Bu-Chun Zhang, Jors van der Sijde, Jiang-Ming Fam, Robert-Jan van Geuns and Evelyn Regar8.3- Treatment of bioresorbable scaffold failureCordula M. Felix, Bert Everaert, Nigel Jepson, Corrado Tamburino and Robert-Jan van Geuns8.4- Recoil and bioresorbable scaffoldsJohn A. Ormiston, Bruce Webber, Janarthanan Sathananthan and Mark WI Webster8.5- Scaffold disruption and late discontinuitiesYoshinobu Onuma, Patrick W. Serruys8.6- The incidence, potential mechanism of side-branch occlusion after implantation of bioresorbable scaffold(s): insights from ABSORB IIYuki Ishibashi, Takeshi Muramatsu, Yohei Sotomi, Yoshinobu Onuma and Patrick W. SerruysSection 9: Tips and tricks to implant BRS9.1- Tips and tricks for implanting BRS: sizing, pre- and post-dilatationAkihito Tanaka, Richard J. Jabbour and Antonio Colombo9.2- Approach to bifurcation lesionsAshok SethSection 10: Emerging technologies (pre-CE mark, pre-FA, pre-PMDA and pre-CFDA)10.1- Overview of the fieldYoshinobu Onuma10.2- MeRes100 (TM)- a sirolimus eluting bioresorbable vascular scaffold systemAshok Seth, Babu Ezhumalai, Sanjeev Bhatt and Pratik Vasani10.3- XINSORB bioresorbable vascular scaffoldJunbo Ge and Li Shen10.4- NeoVas (TM) bioresorbable coronary scaffold systemHan Yangling10.5- ArterioSorb (TM) bioresorbable scaffold by Arterius LtdRasha Al-Lamee10.6- LifetechDeyuan Zhang, Wenjiao Lin, Haiping Oi10.7- Abbott: new generation absorb scaffoldLaura E. Leigh Perkins, Byron J. Lambert and Richard J. Rapozaã ã ã ã ã ã ã ã ã ã ã