دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Deep Chandra Suyal. Ravindra Soni
سری:
ISBN (شابک) : 9783030861681, 9783030861698
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 404
[394]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Bioremediation of Environmental Pollutants: Emerging Trends and Strategies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زیست پالایی آلاینده های محیطی: روندها و استراتژی های نوظهور نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب آخرین روندها و پیشرفتهای فنآوری در پاکسازی زیستی، بهویژه برای نظارت و ارزیابی آن را گردآوری میکند. این کتاب که به 18 فصل تقسیم شده است، مفاهیم اساسی مدیریت زباله و پاکسازی زیستی را خلاصه می کند، پیشرفت های فن آوری های موجود را توصیف می کند، و نقش ابزار دقیق و روش های تحلیلی مدرن را برای پاکسازی و پایداری محیط زیست برجسته می کند. فصلها موضوعاتی مانند نقش سلولهای سوختی میکروبی در مدیریت زباله، حسگرهای زیستی میکروبی برای پایش بیدرنگ فرآیندهای زیست پالایی، میکروارگانیسمهای اصلاحشده ژنتیکی برای پاکسازی زیستی، کاربرد راکتورهای آنزیمی تثبیتشده، تکنیکهای طیفسنجی و رویکردهای درون سیلیسی در پایش زیست پالایی را پوشش میدهند. و ارزیابی این کتاب نه تنها برای محققان و محققان علاقه مند به اصلاح زیستی و پایداری، بلکه برای متخصصان و سیاست گذاران مفید خواهد بود.
This book collates the latest trends and technological advancements in bioremediation, especially for its monitoring and assessment. Divided into 18 chapters, the book summarizes basic concepts of waste management and bioremediation, describes advancements of the existing technologies, and highlights the role of modern instrumentation and analytical methods, for environmental clean-up and sustainability. The chapters cover topics such as the role of microbial fuel cells in waste management, microbial biosensors for real-time monitoring of bioremediation processes, genetically modified microorganisms for bioremediation, application of immobilized enzyme reactors, spectroscopic techniques, and in-silico approaches in bioremediation monitoring and assessment. The book will be advantageous not only to researchers and scholars interested in bioremediation and sustainability but also to professionals and policymakers.
Preface Contents Chapter 1: Waste Management: Challenges and Opportunities 1.1 Introduction 1.2 Classification of the Solid Waste 1.3 Solid Waste Status and Problems 1.4 Solid Waste Management 1.4.1 Collection 1.4.2 Segregation and Secondary Storage 1.4.3 Transportation 1.4.4 Treatment 1.4.4.1 Landfill 1.4.4.2 Incineration 1.4.4.3 Pyrolysis 1.4.4.4 Gasification 1.4.4.5 Recycling 1.4.4.6 Pulverization 1.4.4.7 Mechanical Biological Treatment 1.4.5 Final Disposal 1.5 Circular Economy and 9 R´s Principle 1.6 Solid Waste as a Resource: Seeking Opportunities 1.6.1 Solid Waste as a Fuel 1.6.2 Solid Waste as Construction Materials 1.6.3 Geopolymer 1.6.4 Biogas 1.6.5 Compositing 1.6.6 Plasma Arc Recycling 1.7 Challenges 1.7.1 Population 1.7.2 Consumerism 1.7.3 Plastic Production 1.7.4 Growing Waste Management Cost 1.7.5 Poor Waste Management Facilities 1.7.6 Lack of Legal and Basic Framework 1.7.7 Impact of Pandemic 1.8 Status of Waste Management in India 1.9 Conclusion References Chapter 2: Microbes Assisted Bioremediation: A Green Technology to Remediate Pollutants 2.1 Introduction 2.2 Bioremediation and Its Methods 2.2.1 Biostimulation 2.2.2 Bioaugmentation 2.2.3 Bioattenutaion 2.2.4 Biosparging 2.2.5 Bioventing 2.3 Mechanism of Microbial Bioremediation 2.4 Applications of Microbial Bioremediation 2.4.1 Remediation of Heavy Metals by Microbes 2.4.1.1 Mechanism of Heavy Metals Detoxification by Microbes 2.4.2 Treatment of Solid, Liquid and Gaseous Waste 2.4.2.1 Microbial Degradation of Solid Waste 2.4.2.2 Microbial Degradation of Liquid Waste 2.4.3 Microbial Degradation of Hydrocarbons 2.4.4 Microbial Bioremediation of Dyes 2.4.5 Microbial Bioremediation of Agricultural Chemicals 2.5 Genetic Engineering of Microbial Cultures for Environmental Pollution Regulation 2.6 Conclusion and Future Prospective References Chapter 3: Microbial Fuel Cells for Wastewater Treatment 3.1 Introduction 3.2 Characteristics of the MFCs 3.3 Types of Microbial Fuel Cells 3.3.1 Single Chambered MFC or Air-Cathode MFC 3.3.2 Two-Chambered MFC 3.3.3 Benthic MFC (BMFC) 3.3.4 Stacked MFC (SFMC) 3.4 Principles of Waste Management by the Use of Microbial Fuel Cells 3.5 Advantages of MFCs 3.6 MFCs in Wastewater Management 3.7 Redox Reactions in MFCs (Metabolic Mechanism) 3.7.1 Metabolism in the Anode Chamber 3.7.2 Metabolism in Cathode Chamber 3.7.2.1 Abiotic Cathodes 3.7.2.2 Biocathodes 3.7.2.3 Reaction in Biocathode Chamber (Reduction Reaction) 3.7.2.4 Performance of Microbial Fuel Cells in Agriculture Wastewater Management 3.8 Organic Substrate Removal by MFCs 3.9 Removal of Nitrogen and Phosphorous in MFCs 3.10 Removal of Heavy Metals by MFCs 3.11 Current Difficulties in Microbial Fuel Cells 3.11.1 COD Expulsion Rates 3.11.2 Low Power Densities 3.11.3 Biocathode and Air Cathode Advancement 3.11.4 Integration with Other Valuable Cycles 3.12 Cost Analysis in Microbial Fuel Cells 3.13 Conclusion and Future Perspectives References Chapter 4: Critical Process Parameters and Their Optimization Strategies for Enhanced Bioremediation 4.1 Introduction 4.2 Optimization Approaches in Environmental Bioremediation Processes 4.2.1 In-situ Bioremediation Processes Optimization 4.2.1.1 Phytoremediation 4.2.1.2 Bioaugmentation 4.2.1.3 Biostimulation 4.2.2 Ex-situ Bioremediation Processes Optimization 4.2.2.1 Bioremediation in Bioreactor 4.2.2.2 Biosorption 4.2.2.3 Enzymatic Bioremediation 4.3 Concluding Remarks References Chapter 5: Microbial Biosensors for Real-Time Monitoring of the Bioremediation Processes 5.1 Bioremediation: An Eco-friendly Tool for Environmental Rehabilitation 5.2 Quantification of Pollutant Degradation by Non-microbial Tools 5.3 Limitations Associated with Conventional Monitoring Techniques 5.4 Eco-toxicity Assessment 5.5 Biosensors as a Powerful and Innovative Analytical Tool 5.5.1 Design and Fabrication of a Microbial Biosensor 5.5.2 Host Strain 5.5.3 Reporter Genes 5.5.4 Regulatory Proteins 5.5.5 Microbial Immobilization Techniques 5.6 Diversity of Microbial Biosensors 5.6.1 Electrochemical Microbial Biosensors 5.6.1.1 Types of Electrochemical Biosensors 5.6.1.2 Application of Electrochemical Biosensors in Environmental Monitoring 5.6.2 Optical Microbial Biosensors 5.6.2.1 Bioluminescent Microbial Biosensors 5.6.2.2 Fluorescent Microbial Biosensors 5.6.2.3 Colourimetric Microbial Biosensors 5.6.2.4 Optical Microbial Biosensors in Environmental Monitoring 5.6.3 Microbial Fuel-Cell Type Biosensors 5.6.3.1 Microbial Fuel-Cell Biosensors in Environmental Monitoring 5.7 Advantages, Limitations and Future Challenges of Biosensors 5.7.1 Environmental Safety Concerns 5.7.2 Non-target Interaction and Poor Signal Quality 5.7.3 Reliance on Genetic Manipulation When Designing 5.7.4 The High Cost of Development and Maintenance 5.8 Future of Microbial Biosensors References Chapter 6: Recent Advancements in Mycoremediation 6.1 Introduction 6.2 Impact of the Agrochemicals on the Ecosystem 6.2.1 Eutrophication and Algal Blooms in the Lakes 6.3 Mycoremediation of Pesticides 6.4 Mycoremediation of Herbicides 6.5 Mycoremediation of Heavy Metals 6.5.1 Toxicity of Heavy Metals 6.5.2 Remediation of Heavy Metals by Fungi 6.5.3 Mycoremediation of Hydrocarbon Pollution 6.6 Petroleum Biodegradation by Fungi 6.7 Myconanoparticles 6.8 Biodegradation in Soils by Fungi 6.9 Conclusions References Chapter 7: Genetically Modified Organisms for Bioremediation: Current Research and Advancements 7.1 Introduction 7.2 Bioremediation 7.3 Bioremediation by Extremophilic Organisms 7.4 Designer Organisms for a Cleaner Tomorrow 7.4.1 Gene Transfer 7.4.2 Genetic Mutations Improve Biodegradation of Pollutants 7.4.3 Genetically Engineered Enzymes in Bioremediation 7.4.4 Genetically Modified Plants for Improved Phytoremediation 7.5 Impact and Challenges of Using Genetically Modified Organisms for Bioremediation 7.6 Future Perspectives References Chapter 8: Understanding the Role of Genetic and Protein Networking Involved in Microbial Bioremediation 8.1 Introduction 8.2 Unraveling the Potential of Culturable Microorganism 8.2.1 Genomic Approaches 8.2.1.1 Understanding Phylogeny Through 16S rRNA 8.2.1.2 Mining the Physiology Through Whole Genome Sequencing 8.2.1.3 Applying Omics in Bioremediation 8.2.2 Transcriptomics 8.2.3 Proteomics 8.2.3.1 Tracing the Developments on Bioremediation Using Proteomics Tools 8.2.4 Interactomics 8.3 Metaomics for Unraveling the Unculturable Microorganism 8.3.1 Metagenomics 8.3.1.1 Case Studies of Metagenomic Approaches for Bioremediation 8.3.1.2 Tools Involved in Metagenomic Approach 8.3.2 Metatranscriptomics 8.3.3 Metaproteomics 8.4 Metabolomics and Fluxomics 8.5 Prediction and Reconstruction of Bioremediation Pathways 8.6 In-Silico Tools Used for Pathway Reconstruction 8.7 Gene Editing 8.8 Synthetic Biology for Application in Bioremediation 8.9 Future Prospects 8.10 Conclusion References Chapter 9: In Silico Approaches in Bioremediation Research and Advancements 9.1 Introduction 9.2 Microbes and Plants: An Asset in Bioremediation 9.3 Environmental Factors Affecting Microbes and Plants 9.4 Omics Experimentation for Bioremediation 9.4.1 In Silico Analysis of Omics Data and Their Integration for Bioremediation 9.4.1.1 Genome Assembly and Data Analysis 9.4.1.2 16S rRNA Based Approach in Bioremediation 9.4.1.3 Transcriptome Data Analysis 9.4.1.4 Proteomics Data Analysis 9.4.1.5 Metabolomics Data Analysis 9.4.1.6 NMR Spectroscopy and Metabolite Profiling During Bioremediation 9.4.2 Computational Systems Biology for Omics Data Integration and Novel Discovery 9.4.3 Pathway Modeling 9.4.4 Network Analysis 9.4.5 Target Structure Modeling, Validation and Visualization 9.4.6 Molecular Docking, Virtual Screening and Molecular Dynamics Simulation 9.5 Development of In Silico Platforms for Bioremediation Research 9.5.1 Database Development 9.5.2 Software/Tool Development 9.6 Limitation of In Silico Approaches 9.7 Future Prospects 9.8 Conclusion References Chapter 10: Modern Landfilling Approaches for Waste Disposal and Management 10.1 Introduction 10.2 Solid Waste Composition 10.3 Management of Solid Waste 10.3.1 Decentralization of MSWs Management 10.3.2 Separation of MSWs at Sites 10.3.3 Disinfected and Secure Management of MSWs 10.3.4 Combustible Gases from Landfills 10.3.5 Soil Salinity from Compost Application 10.4 Sustainable Landfill Management 10.5 Optional Marketing of Products from MSWs 10.6 Application of ``Pay as You Throw´´ Scheme 10.7 Conclusion References Chapter 11: Aerobic Granular Technology: Current Perspective and Developments 11.1 Introduction 11.2 What Is Aerobic Granular Sludge? 11.3 Granule Formation and Characterization 11.3.1 Granule Formation 11.3.1.1 Seed Sludge 11.3.1.2 Feed Composition 11.3.1.3 SBR Operation 11.3.2 Granule Characterization 11.3.2.1 Physical Parameters 11.3.2.2 Chemical Parameters 11.3.2.3 Biological Parameters 11.4 Mechanism of Aerobic Granulation 11.5 Applications of Aerobic Granulation Technology 11.5.1 Nutrient Removal by Aerobic Granules 11.5.2 Degradation of Pollutants 11.5.3 Heavy Metal Elimination Using Aerobic Granules 11.5.4 Wastewater/Sewage Treatment 11.6 Challenges Ahead 11.7 Future Prospects 11.8 Conclusion References Chapter 12: Recent Perspectives of Immobilized Enzyme Reactors Used for Wastewater Treatment 12.1 Introduction 12.2 Modes of Immobilization 12.3 Enzyme Reactors 12.3.1 Batch Mode Reactor 12.3.2 Continuous Mode Reactor 12.3.3 Membrane Reactor (MR) 12.4 Factors Important for Choosing Immobilized Enzyme Reactors 12.5 Conclusions References Chapter 13: Role of Chelating Compounds in Biodegradation and Bioremediation 13.1 Introduction 13.2 Chelator-Assisted Phytoextraction 13.2.1 Natural Chelating Agents 13.2.1.1 Aminopolycarboxylates as Chelating Agents Nitrilotriacetic Acid (NTA) Ethylenediaminedisuccinic Acid (EDDS) 13.2.1.2 Low Molecular Weight Organic Acids as Chelating Agents Citric Acid Tartaric Acid Oxalic Acid 13.2.2 Synthetic Chelating Agents 13.2.2.1 Aminopolycarboxylic Acids as Chelating Agents Ethylenediaminetetraacetic Acid (EDTA) Diethylenetriaminepentaacetic Acid (DTPA) 13.3 Soil Washing Using Chelating Agents 13.4 Chelant Enhanced Electrokinetic Extraction 13.5 Conclusion References Chapter 14: Spectroscopy and Its Advancements for Environmental Sustainability 14.1 Introduction 14.2 UV-Visible (UV/VIS) Spectroscopy 14.3 Applications of UV-Vis Spectroscopy 14.4 NMR Spectroscopy 14.4.1 Solution-State NMR 14.4.2 Solid-State NMR 14.4.3 High-Resolution Magic Angle Spinning NMR 14.4.4 Comprehensive Multiphase NMR 14.4.5 Hyphenated NMR 14.4.6 Low Field NMR 14.4.7 Magnetic Resonance Imaging (MRI) 14.5 Study of Non-covalent Interaction 14.6 Study of Metabolite 14.7 X-Ray Fluorescence (XRF) 14.7.1 Use of XRF in Environmental Application 14.7.2 Detection of Heavy Metals in Water by XRF 14.8 Inductively Coupled Plasma (ICP) 14.8.1 Application of ICP-MS in Environments 14.9 Future Perspectives 14.10 Conclusion References Chapter 15: Role of Biochar in Wastewater Treatment and Sustainability 15.1 Introduction 15.2 Organic Contaminants 15.3 Inorganic Contaminants 15.4 Application of Biochar for Wastewater Treatment 15.5 Removal of the Pesticides by Biochar 15.6 Biochar for Heavy Metal Contaminated Soils 15.7 Mechanism of Removal of Contaminants by Modified Biochar 15.8 Conclusion References Chapter 16: Bio-inoculants for Biodegradation and Bioconversion of Agrowaste: Status and Prospects 16.1 Introduction 16.2 Agro-Waste 16.2.1 Crop Waste 16.2.2 Animal Waste 16.3 Biodegradation of Agrowaste 16.3.1 Enzymes Responsible for Biodegradation 16.4 Bioinoculants for Biodegradation and Bioconversion of Agro Waste 16.4.1 Importance of Bio-inoculants in Agrowaste Degradation 16.4.2 Renewable Energy Generation 16.4.2.1 Bioethanol Production 16.4.2.2 Biogas Production 16.4.3 Compost Production 16.5 Conclusion References Chapter 17: Biochemical Parameters and Their Optimization Strategies for Microbial Bioremediation of Wastewater 17.1 Introduction 17.2 Factors Affecting Microbial Growth and Bioremediation Process 17.2.1 Nutrient/Substrate Content 17.2.2 Temperature 17.2.3 pH 17.2.4 Oxygen Level 17.2.5 Enzymes 17.3 Process Optimization 17.4 Bioremediation Process Optimization 17.5 Conclusion and Future Perspectives References Chapter 18: Advanced Molecular Technologies for Environmental Restoration and Sustainability 18.1 Introduction 18.2 Genomic Methods 18.3 Specific Genotyping Methodologies 18.3.1 Fingerprinting-Based Methodologies 18.3.2 Sequence-Based Methodologies 18.4 The Genomic Future 18.5 Proteomics Technologies in Bacterial Identification and Characterization 18.5.1 Mass Spectrometry-Based Bacterial Characterization and Identification 18.5.1.1 Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry 18.5.1.2 Electrospray Ionization Mass Spectrometry 18.5.1.3 Surface-Enhanced Laser Desorption/Ionization 18.5.2 Gel-Based Method 18.5.2.1 Two-Dimensional Gel Electrophoresis (2DE) 18.6 Databases 18.7 Conclusion References