دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: Shijie Liu
سری:
ISBN (شابک) : 0128210125, 9780128210123
ناشر: Elsevier Science Ltd
سال نشر: 2020
تعداد صفحات: 939
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 32 مگابایت
در صورت تبدیل فایل کتاب Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی فرآیندهای زیستی: سینتیک، پایداری و طراحی راکتور نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مهندسی فرآیندهای زیستی: سینتیک، پایداری و طراحی راکتور، ویرایش سوم، یک کتاب درسی سیستماتیک و جامع در مورد سینتیک فرآیندهای زیستی، تبدیل مولکولی، سیستمهای فرآیندهای زیستی، پایداری و مهندسی واکنش است. این کتاب به بررسی مبانی مربوطه سینتیک شیمیایی، راکتورهای دسته ای و پیوسته، بیوشیمی، میکروبیولوژی، بیولوژی مولکولی، مهندسی واکنش و مهندسی سیستم های زیستی می پردازد و اصول کلیدی را معرفی می کند که مهندسان فرآیندهای زیستی را قادر می سازد در تجزیه و تحلیل، بهینه سازی، انتخاب روش های کشت، طراحی شرکت کنند. و کنترل مداوم بر تبدیلات بیولوژیکی و شیمیایی مولکولی. درمان کمی فرآیندهای زیستی موضوع اصلی این متن است، با این حال تکنیکها و کاربردهای پیشرفتهتر نیز پوشش داده شده است.
Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design, Third Edition, is a systematic and comprehensive textbook on bioprocess kinetics, molecular transformation, bioprocess systems, sustainability and reaction engineering. The book reviews the relevant fundamentals of chemical kinetics, batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering and bioprocess systems engineering, introducing key principles that enable bioprocess engineers to engage in the analysis, optimization, selection of cultivation methods, design and consistent control over molecular biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme in this text, however more advanced techniques and applications are also covered.
Cover Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design Copyright Chapter 1 - What is bioprocess engineering? 1.1 - Biological cycle 1.2 - Bioprocess engineering applications 1.3 - Scales: living organism and manufacturing 1.4 - Green chemistry 1.5 - Sustainability 1.6 - Biorefinery 1.7 - Biotechnology and bioprocess engineering 1.8 - Mathematics, biology, and engineering 1.9 - The story of penicillin: the dawn of bioprocess engineering 1.10 - Bioprocesses: regulatory constraints 1.11 - The pillars of bioprocess kinetics and systems engineering 1.12 - Summary Problems References D. History of Penicillin Further readings A. Green Chemistry B. Sustainability C. Biorefinery D. History of Penicillin E. Regulatory Issues Chapter 2 - An overview of biological basics Abstract Keywords Chapter outline 2.1 - Cells and organisms 2.1.1 - Microbial diversity 2.1.2 - How cells are named 2.1.3 - Prokaryotes 2.1.3.1 - Eubacteria 2.1.3.2 - Archaebacteria 2.1.4 - Eukaryotes 2.2 - Viruses 2.3 - Prions 2.4 - Stem cell 2.5 - Cell chemistry 2.5.1 - Amino acids and proteins 2.5.2 - Monosaccharides 2.5.2.1 - Aldoses 2.5.2.1.1 - D-hexoses 2.5.2.1.2 - Pentoses 2.5.2.1.3 - D-tetroses 2.5.2.1.4 - D-trioses 2.5.2.2 - Ketoses 2.5.2.2.1 - Ketohexoses 2.5.2.2.2 - Ketopentoses 2.5.2.2.3 - Ketotetroses 2.5.2.2.4 - Ketotriose 2.5.2.3 - Deoxysugars 2.5.3 - Disaccharides 2.5.4 - Polysaccharides 2.5.4.1 - Starch 2.5.4.2 - Glycogen Fructan 2.5.4.4 - Cellulose 2.5.4.5 - Hemicelluloses 2.5.5 - Phytic acid and inositol 2.5.6 - Chitin and chitosan 2.5.7 - Lignin 2.5.8 - Lipids, fats, and steroids 2.5.9 - Nucleic acids, RNA, and DNA 2.6 - Cell feed 2.6.1 - Macronutrients 2.6.2 - Micronutrients 2.6.3 - Growth media 2.7 - Non earthly/unnatural biological agents 2.8 - Summary Problems References Further readings Chapter 3 - An overview of chemical reaction analysis 3.1 - Chemical species 3.2 - Chemical reactions 3.3 - Reaction rates 3.3.1 - Definition of the rate of reaction, rA 3.3.2 - Rate of a single irreversible reaction 3.3.3 - Rate of an elementary reaction 3.3.4 - Rate of a reversible reaction 3.3.5 - Rates of multiple reactions 3.3.6 - Rate coefficients 3.4 - Approximate reactions 3.5 - Stoichiometry 3.6 - Yield and yield factor 3.7 - Reaction rates near equilibrium 3.8 - Energy regularity 3.9 - Classification of multiple reactions and selectivity 3.10 - Coupled reactions 3.11 - Reactor mass balances 3.12 - Reaction energy balances 3.13 - Reactor momentum balance 3.14 - Ideal reactors 3.15 - Bioprocess systems optimization 3.16 - Summary Problems Further readings Chapter 4 - Batch reactor 4.1 - Isothermal batch reactors 4.2 - Batch reactor sizing 4.3 - Nonisothermal batch reactors 4.4 - Numerical solutions of batch reactor problems 4.5 - The reactor pinch graph 4.6 - Summary Problems References Chapter 5 - Ideal flow reactors Chapter outline 5.1 - Commonly useful parameters 5.2 - Plug flow reactor (PFR) 5.3 - Continuous stirred tank reactor (CSTR) and chemostat 5.4 - Multiple reactors 5.5 - Recycle reactors 5.6 - PFR with distributed feeding and withdrawing 5.6.1 - Distributed feed 5.6.2 - Membrane reactor 5.7 - Reactive distillation 5.8 - PFR or CSTR? 5.9 - Steady nonisothermal flow reactors 5.10 - Reactive extraction 5.11 - Graphic solutions using batch concentration data 5.11.1 - Solution of A PFR using batch concentration data 5.11.2 - Solution of A CSTR using batch concentration data 5.12 - Summary Problems Further readings Chapter 6 - Kinetic theory and reaction kinetics Chapter outline 6.1 - Elementary kinetic theory 6.1.1 - Distribution laws 6.1.2 - Collision rate 6.2 - Collision theory of reaction rates 6.3 - Reaction rate analysis/approximation 6.3.1 - Fast equilibrium step (FES) approximation 6.3.2 - Pseudosteady state hypothesis (PSSH) 6.4 - Unimolecular reactions 6.5 - Free radicals 6.6 - Kinetics of acid hydrolysis 6.7 - Parametric estimation 6.8 - Summary Problems References Chapter 7 - Enzymes Chapter outline 7.1 - How enzymes work? 7.2 - Simple enzyme kinetics 7.2.1 - The fast equilibrium step (FES) assumption 7.2.2 - The pseudosteady-state hypothesis (PSSH) 7.2.3 - Specific activity 7.3 - Competitive and allosteric enzyme kinetics 7.3.1 - Reversible reactions 7.3.2 - Competitive reactions 7.3.3 - Reactions with nbound substrates 7.3.4 - Enzyme-substituted reactions–the ping-pong mechanism 7.3.5 - Bimolecular reactions on allosteric enzymes 7.4 - Enzyme inhibition 7.4.1 - Allosteric inhibition 7.4.1.1 - Noncompetitive inhibition: β = 0 and αS = 1 7.4.1.2 - Uncompetitive inhibition: β = 0 and KI → ∞ while αS/KI is finite 7.4.2 - Competitive inhibition 7.5 - Higher order substrate kinetics 7.6 - pH effects 7.7 - Temperature effects 7.8 - Insoluble substrates and/or high-enzyme loading 7.9 - Immobilized enzyme systems 7.9.1 - Methods of immobilization 7.9.1.1 - Entrapment 7.9.1.2 - Surface immobilization 7.9.2 - Electrostatic and steric effects in immobilized enzyme systems 7.10 - Analysis of bioprocess with enzymatic reactions 7.11 - Large-scale production of enzymes 7.12 - Medical and industrial utilization of enzymes 7.13 - Kinetic approximation: why Michaelis-Menten equation works 7.13.1 - Pseudosteady state hypothesis (PSSH) 7.13.2 - Fast equilibrium step (FES) approximation 7.13.3 - Modified-fast equilibrium approximation 7.14 - Summary Problems Further readings Chapter 8 - Chemical reactions on solid surfaces 8.1 - Catalysis 8.2 - How does reaction with solid occur? 8.3 - Langmuir: theoretical basis of adsorption kinetics 8.4 - Idealization of nonideal surfaces 8.4.1 - UniLan adsorption isotherm 8.4.2 - Common empirical approximate isotherms 8.5 - Cooperative adsorption 8.5.1 - Cooperative adsorption of single species 8.5.2 - Competitive cooperative adsorption 8.5.3 - Pore size and surface characterization 8.6 - LHHW: surface reactions with rate-controlling steps 8.7 - Why rate approximation such as LHHW works? 8.8 - Chemical reactions on nonideal surfaces based on the distribution of interaction energy 8.9 - Cooperative catalysis 8.9.1 - Unimolecular reactions 8.9.2 - Bimolecular reactions 8.10 - Kinetics of reactions on surfaces where the solid is either a product or reactant 8.11 - Decline of surface activity: catalyst deactivation 8.12 - Summary Problems References Further readings Chapter 9 - Protein-ligand interactions Chapter outline 9.1 - Multifunctionalization of proteins 9.2 - Covalently bound oligomers 9.3 - Noncovalent assembly of protein 9.4 - Protein assembly via domain swapping 9.5 - Coexistence of protein oligomer mixtures 9.6 - Three simplistic models of enzyme interactions 9.6.1 - The MWC model 9.6.2 - The KNF model 9.6.3 - The morpheein model 9.7 - Protein-ligand interactions 9.8 - Single ligand species versus enzymes with two identical sites 9.9 - Single-ligand species on a homosteric enzyme 9.10 - Sequential single ligand species on allosteric enzymes 9.11 - Single-ligand species on random-access allosteric enzymes 9.12 - Multiple different ligand-specific active centers 9.12.1 - Simple allosteric enzyme 9.12.2 - Dimers with parallel allosteric sites 9.12.3 - Parallel interaction 9.12.4 - Uniallosteric interaction 9.13 - Competitive multiligand interactions on homosteric enzymes 9.13.1 - Two-site homosteric enzyme 9.13.2 - n-site homosteric enzyme 9.14 - Summary Problems References Further readings Chapter 10 - Molecular regulation 10.1 - Single substrate reactions 10.1.1 - Catalysis of a homosteric enzyme 10.1.2 - Catalysis of an allosteric enzyme 10.2 - “Unimolecular” reactions 10.2.1 - Homosteric dimeric enzyme 10.2.2 - Homosteric enzymes 10.3 - Bimolecular reactions 10.3.1 - Multisited enzymes 10.3.2 - Enzyme substitution 10.4 - The simplest polymorph: a bimorph of two monomeric forms of the same enzyme 10.4.1 - An indifferent bimorph or morpheein 10.4.2 - A ligand-stabilized bimorph 10.4.3 - A lignd-induced bimorph 10.4.4 - A simplistic kinetic polymorph 10.5 - Kinetics of polymorphic catalysis 10.5.1 - Substrate-induced polymorph 10.5.1.1 - A bimorph of two n-oligo enzymes 10.5.2 - Substrate-stabilized polymorph 10.5.2.1 - Substrate-stabilized interconvertible polymorph with noninteractive sites 10.5.3 - Substrate-indifferent polymorph 10.5.3.1 - Substrate-indifferent interconvertible biprotomer polymorph with noninteractive sites 10.5.3.2 - An example of polymorph 10.6 - Multimolecular reactions on enzymes with ligand-specific active centers 10.6.1 - Simplistic allosteric enzyme 10.6.2 - Dimers with parallel allosteric sites 10.6.3 - Catalysis on allosteric enzyme with n-pairs of parallel sites 10.7 - Parallel allosteric competitive interactions 10.7.1 - Simplistic allosteric enzyme 10.7.2 - Dimers with parallel allosteric sites 10.7.3 - Interactive enzymes with pairs of parallel n-homosteric sites 10.8 - Summary Problems References Further readings Chapter 11 - Cell metabolism Chapter outline 11.1 - The central dogma 11.2 - DNA replication: preserving and propagating the cellular message 11.3 - Transcription: sending the message 11.4 - Translation: message to product 11.4.1 - Genetic code: universal message 11.4.2 - Translation: how the machinery works 11.4.3 - Posttranslational processing: making the product useful 11.5 - Metabolic regulation 11.5.1 - Genetic-level control: which proteins are synthesized? 11.5.2 - Metabolic pathway control 11.6 - How a cell senses its extracellular environment? 11.6.1 - Mechanisms to transport small molecules across cellular membranes 11.6.2 - Role of cell receptors in metabolism and cellular differentiation 11.7 - Major metabolic pathways 11.7.1 - Bioenergetics 11.7.2 - Glucose metabolism: glycolysis and the TCA cycle 11.7.3 - Metabolism of common plant biomass-derived monosaccharides 11.7.4 - Fermentative pathways 11.7.5 - Respiration 11.7.6 - Control sites in aerobic glucose metabolism 11.7.7 - Metabolism of nitrogenous compounds 11.7.8 - Nitrogen fixation 11.7.9 - Metabolism of hydrocarbons 11.7.10 - Interrelationships of metabolic pathways 11.8 - Overview of biosynthesis 11.9 - Overview of anaerobic metabolism 11.10 - Overview of autotrophic metabolism 11.11 - Overall kinetic assymptote: the Monod equation 11.12 - Summary References Further readings Chapter 12 - Evolution and genetic engineering Chapter outline 12.1 - Mutations 12.1.1 - What causes genetic mutations? 12.1.1.1 - Spontaneous mutations 12.1.1.2 - Induced mutations 12.1.2 - Types of mutations 12.1.2.1 - Germ-line mutations and somatic mutations 12.1.2.2 - Lethal, nonlethal, and neutral mutations 12.1.2.3 - Point mutations 12.1.2.3.1 - Transitions or transversions 12.1.2.3.2 - Insertions 12.1.2.3.3 - Deletions 12.1.3 - Large-scale mutations 12.1.3.1 - Chromosomal structural mutations 12.1.3. 2 Changes in chromosome number 12.2 - Selection 12.2.1 - Natural selection 12.2.2 - Artificial selection (selection of mutants with useful mutations) 12.3 - Natural mechanisms for gene transfer and rearrangement 12.3.1 - Genetic recombination 12.3.2 - Transformation 12.3.3 - Transduction 12.3.4 - Episomes and conjugation 12.3.5 - Transposons: internal gene transfer 12.4 - Techniques of genetic engineering 12.4.1 - Gene synthesis 12.4.2 - Complimentary DNA or cDNA 12.4.3 - Cloning genes into a plasmid 12.4.4 - Polymerase chain reaction 12.4.5 - Vectors and plasmids 12.4.5.1 - Restriction enzymes 12.4.5.2 - DNA ligase 12.4.5.3 - Plasmids 12.4.5.4 - Gene transfer 12.5 - Applications of genetic engineering 12.6 - The product and process decisions 12.7 - Host-vector system selection 12.7.1 - Escherichia coli 12.7.2 - Gram-positive bacteria 12.7.3 - Lower eukaryotic cells 12.7.4 - Mammalian cells 12.7.5 - Insect cell-baculovirus system 12.7.6 - Transgenic animals 12.7.7 - Transgenic plants and plant cell culture 12.7.8 - Comparison of strategies 12.8 - Regulatory constraints on genetic processes 12.9 - Metabolic engineering 12.10 - Protein engineering 12.11 - Summary Problems References Further readings Chapter 13 - How cells grow Chapter outline 13.1 - Quantifying biomass 13.1.1 - Cell number density 13.1.2 - Cell mass concentration 13.1.2.1 - Direct methods 13.1.2.2 - Indirect methods 13.2 - Batch growth patterns 13.3 - Biomass yield 13.4 - Approximate growth kinetics and Monod equation 13.5 - Cell death rate 13.6 - Cell maintenance and endogenous metabolism 13.7 - Product yield 13.8 - Oxygen demand for aerobic microorganisms 13.9 - Autotrophic growth 13.10 - Effect of environmental conditions 13.10.1 - Effect of temperature 13.10.2 - Effect of pH 13.10.3 - Effect of redox potential 13.10.4 - Effect of electrolytes and substrate concentration 13.11 - Heat generation by microbial growth 13.12 - Overview of cell growth kinetic models 13.12.1 - Unstructured growth models 13.12.2 - Simple growth rate model: Monod equation 13.12.3 - Modified Monod equation with growth inhibitors 13.12.3.1 - Substrate inhibition 13.12.3.2 - Product inhibition 13.12.3.3 - Cell inhibition 13.12.3.4 - Inhibition by toxic compounds 13.12.4 - Multiple limiting substrates 13.12.4.1 - Complementary substrates 13.12.4.2 - Substitutable substrates 13.12.4.3 - Mixed types of substrates 13.12.5 - Simplest reaction network model 13.12.6 - Simplest metabolic pathway 13.12.7 - Cybernetic models 13.12.8 - Computational systems biology 13.13 - Selective substrate uptake kinetics 13.14 - Summary Problems References Further readings Chapter 14 - Cell cultivation 14.1 - Batch culture 14.2 - Continuous culture 14.2.1 - Chemostat devices for continuous culture 14.2.2 - The ideal chemostat 14.2.3 - Cell composition change in chemostat 14.2.4 - The chemostat as a tool 14.3 - Choosing the cultivation method 14.4 - Chemostat with recycle 14.5 - Multistage chemostat systems 14.6 - Waste water treatment process 14.7 - Immobilized cell systems 14.7.1 - Active immobilization of cells 14.7.2 - Passive immobilization—biological films 14.8 - Solid substrate fermentations 14.9 - Fed-batch operations 14.9.1 - Theoretical considerations 14.9.1.1 - Culture volume 14.9.1.2 Limiting substrate in the reactor 14.9.1.2 - Cell biomass 14.9.1.4. Extracellular products 14.9.1.5 - Temperature in the reactor 14.9.2 - Ideal isothermal fed-batch reactors 14.9.3 - Isothermal pseudosteady state fed-batch growth 14.10 - Summary Problems Further readings Chapter 15 - Sustainability and stability 15.1 - Feed stability of a CSTR 15.1.1 - Multiple steady states (MSS) 15.1.2 - Stability of steady state 15.1.3 - Effect of feed parameters on MSS 15.2 - Thermal stability of a CSTR 15.3 - Approaching steady state 15.4 - Catalyst instability 15.4.1 - Fouling 15.4.2 - Poisoning 15.4.3 - Sintering 15.4.4 - Catalyst activity decay 15.4.5 - Spent catalyst regeneration 15.5 - Genetic instability 15.5.1 - Segregational instability 15.5.2 - Plasmid structural instability 15.5.3 - Host cell mutations 15.5.4 - Growth-rate-dominated instability 15.5.5 - Considerations in plasmid design to avoid process problems 15.5.6 - Host-vector interactions and genetic instability 15.6 - Mixed cultures 15.6.1 - Major classes of interactions in mixed cultures 15.6.2 - Interactions of two species fed on the same limiting substrate 15.6.3 - Interactions of two mutualistic species 15.6.4 - Industrial applications of mixed cultures 15.6.5 - Mixed culture in nature 15.7 - Sustainability of mixed culture 15.7.1 - Predator and prey interactions 15.7.2 - Lokka-Volterra model – a simplified predator-prey interaction model 15.8 - Summary Problems Further readings Chapter 16 - Combustion, reactive hazard, and bioprocess safety 16.1 - Biological hazards 16.2 - Identifying chemical reactivity hazards 16.2.1 - Chemical hazard labeling 16.2.2 - Chemical reactivity hazard 16.3 - Heat, flames, fires, and explosions 16.4 - Probabilities, redundancy, and worst-case scenarios 16.5 - Chain reactions 16.6 - Autooxidation and safety 16.6.1 - A simple model of autooxidation 16.6.2 - Spoilage of food 16.6.3 - Antioxidants 16.7 - Combustion 16.7.1 - Hydrogen oxidation 16.7.2 - Chain branching reactions 16.7.3 - Alkane oxidation 16.7.4 - Liquid alkane oxidation 16.7.5 - Thermal ignition 16.7.6 - Thermal and chemical autocatalysis 16.8 - Premixed flames 16.8.1 - Stability of a tube flame 16.8.2 - Premixed burner flames 16.8.3 - Diffusion flames 16.8.4 - Laminar and turbulent flames 16.9 - Heat generation 16.9.1 - Radiation 16.9.2 - Flammability limits 16.10 - Gasification and pyrolysis 16.10.1 - Pyrolysis 16.10.2 - Coke and charcoal 16.10.3 - The campfire or charcoal grill 16.10.4 - Solid wood or coal combustion 16.10.5 - Gasification and Fisher-Tropsch technology 16.11 - Solid and liquid explosives 16.12 - Explosions and detonations 16.13 - Reactor safety 16.14 - Summary Problems Websites Further readings Chapter 17 - Mass transfer effects: immobilized and heterogeneous reaction systems 17.1 - How transformation occurs in a heterogeneous system? 17.2 - Molecular diffusion and mass transfer rate 17.3 - External mass transfer 17.4 - Are kinetic constants of microbial growth dependent on cell size? 17.5 - Reactions in isothermal porous catalysts 17.5.1 - Asymptote of effectiveness factor and generalized Thiele modulus 17.5.2 - Isothermal effectiveness factor for KA = 0 17.5.2.1 - Effectiveness factor for a zeroth order reaction in an isothermal porous slab 17.5.2.2 - Effectiveness factor for a zeroth order reaction in an isothermal porous sphere 17.5.3 - Isothermal effectiveness factor for KA → ∞ 17.5.3.1 - Effectiveness factor for a first order reaction in an isothermal porous slab 17.5.3.2 - Effectiveness factor for a first order reaction in an isothermal porous sphere 17.5.4 - Effectiveness factor for isothermal porous catalyst 17.5.4.1 - Isothermal effectiveness factor in a porous slab 17.5.4.2 - Isothermal effectiveness factor in a porous sphere 17.6 - Mass transfer effects in nonisothermal porous particles 17.7 - Encapsulation immobilization 17.8 - Combined external and internal mass transfer effects 17.9 - The shrinking core model 17.9.1 - Time required to completely dissolve a porous slab full of fast-reactive materials 17.9.2 - Time required to completely dissolve a porous sphere full of fast-reactive materials 17.10 - Summary Problems References Further readings Chapter 18 - Bioreactor design and operation 18.1 - Bioreactor selection 18.2 - Reactor operational mode selection 18.3 - Aeration, agitation, and heat transfer 18.4 - Scale-up 18.5 - Scale-down 18.6 - Bioinstrumentation and controls 18.7 - Sterilization of process fluids 18.7.1 - Batch thermal sterilization 18.7.2 - Continuous thermal sterilization 18.7.2.1 - Thermal sterilization in a CSTR 18.7.2.2 - Thermal sterilization in a PFR 18.7.2.3 - Thermal sterilization in a laminar flow tubular reactor 18.7.2.4 - Thermal sterilization in a turbulent flow tubular reactor 18.7.3 - Sterilization of liquids 18.7.4 - Sterilization of gases 18.7.5 - Ensuring sterility 18.8 - Aseptic operations and practical considerations for bioreactor system construction 18.8.1 - Equipment, medium transfer and flow control 18.8.2 - Stirrer shaft 18.8.3 - Fermenter inoculation and sampling 18.8.4 - Materials of construction 18.8.5 - Sparger design 18.8.6 - Evaporation control 18.9 - Effect of imperfect mixing 18.9.1 - Compartment model 18.9.2 - Surface adhesion model 18.10 - Summary Problems References Chapter 19 - Real reactors and residence time distributions Chapter outline 19.1 - Real reactors 19.2 - Residence-time distribution function 19.2.1 - RTD determination with a pulse input 19.2.2 - RTD determination with a step input 19.2.3 - RTD determination with any tracer inputs 19.2.4 - Characteristics of the RTD 19.3 - Residence-time distributions of ideal reactors 19.3.1 - RTDs in batch reactors and PFRs 19.3.2 - RTD in a CSTR 19.3.3 - RTD in an ideal laminar-flow tubular reactor 19.3.4 - A comparison of RTDs in ideal reactors 19.4 - Tubular dispersion reactor 19.5 - PFR with partial distributed feed/withdraw and recycle 19.6 - Summary Problems Further readings Chapter 20 - Design of experiment 20.1 - Experiment 20.1.1 - Controlled experiments 20.1.2 - Observational study: natural or field experiments 20.2 - Adaptive design 20.3 - Factorial design, LI 20.4 - Fractional factorial design 20.4.1 - Linear response 20.4.2 - Response surface 20.4.3 - Non-interacting systems 20.5 - Plackett-Burman design 20.6 - Taguchi experimental design 20.7 - Central composite design 20.8 - Box-Behnken design 20.9 - Doehlert design 20.10 - Superlative box design 20.11 - Quality impartial design 20.12 - DOE for cubic and quartic response models 20.13 - Independent variable versus normalized factor 20.14 - Summary Further readings Index