دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2020
نویسندگان: Paul M. Rea (editor)
سری: Advances in Experimental Medicine and Biology (1262) (Book 1262)
ISBN (شابک) : 3030439607, 9783030439606
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 247
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب Biomedical Visualisation: Volume 7 (Advances in Experimental Medicine and Biology (1262)) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجسم زیست پزشکی: جلد 7 (پیشرفتها در پزشکی تجربی و زیست شناسی (1262)) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب ویرایش شده استفاده از فناوری را بررسی می کند تا ما را قادر سازد تا علوم زیستی را به شیوه ای معنادارتر و جذاب تر تجسم کنیم. این به علاقهمندان به تکنیکهای تجسم امکان میدهد تا درک بهتری از برنامههایی که میتوانند در تجسم، تصویربرداری و تجزیه و تحلیل، آموزش، مشارکت و آموزش مورد استفاده قرار گیرند، به دست آورند.
خواننده میتواند استفاده از فنآوریها از تعدادی زمینه برای ایجاد یک نمایش بصری جذاب و معنادار از علوم زیست پزشکی، با تمرکز در این جلد مربوط به آناتومی، و سناریوهای کاربردی بالینی.
همه فصلهای این جلد شامل پروژههای تحقیقاتی مشترک و خلاقانه در مقطع کارشناسی ارشد است. از دانشجویان کارشناسی ارشد تجسم پزشکی و آناتومی انسان. این برنامه تحصیلات تکمیلی پیشرو و پیشرو در جهان، یک مدرک مشارکتی مشترک بین دانشکده علوم زندگی در کالج پزشکی، دامپزشکی و علوم زیستی در دانشگاه گلاسکو، و دانشکده شبیه سازی و تجسم، دانشکده هنر گلاسکو است. . این فصل ها واقعاً کاربردهای فن آوری شگفت انگیز و متنوعی را که به عنوان بخشی از پروژه های تحقیقاتی آنها انجام شده است، نشان می دهد.This edited book explores the use of technology to enable us to visualise the life sciences in a more meaningful and engaging way. It will enable those interested in visualisation techniques to gain a better understanding of the applications that can be used in visualisation, imaging and analysis, education, engagement and training.
The reader will be able to explore the utilisation of technologies from a number of fields to enable an engaging and meaningful visual representation of the biomedical sciences, with a focus in this volume related to anatomy, and clinically applied scenarios.
All chapters in this volume feature collaborative and innovative postgraduate research projects from graduate students of the MSc Medical Visualisation and Human Anatomy. This pioneering, world-leading postgraduate taught degree program is a joint partnership degree between the School of Life Sciences within the College of Medical, Veterinary and Life Sciences in the University of Glasgow, and the School of Simulation and Visualisation, The Glasgow School of Art. These chapters truly showcase the amazing and diverse technological applications that have been carried out as part of their research projects.Preface Acknowledgements About the Book Contents About the Editor Contributors 1: Virtual Anatomy Museum: Facilitating Public Engagement Through an Interactive Application 1.1 Introduction 1.1.1 Medical Museums 1.1.2 Digitisation 1.1.3 Virtual Museums 1.1.4 Aims and Objectives 1.2 Methods 1.2.1 Modelling the Museum 1.2.2 Models of the Specimens 1.2.2.1 Studio Set-Up and Photography Acquisition 1.2.2.2 Generation of Photogrammetric Models 1.2.3 Design of the Application 1.3 Results 1.3.1 Virtual Museums Can Facilitate Public Engagement 1.4 Discussion 1.4.1 Challenges of Creating Specimen Models 1.4.2 Implementation into Unity 1.5 Future Development and Conclusion References 2: eLearning and Embryology: Designing an Application to Improve 3D Comprehension of Embryological Structures 2.1 Introduction 2.1.1 Current Use of eLearning in Embryology and Histology 2.1.2 Problems and Advances in Digital Histology 2.2 Methods 2.2.1 Design 2.2.2 Development Phase 2.3 Evaluation 2.3.1 Participants 2.3.2 Apparatus 2.3.3 Experimental Procedure 2.3.4 Results 2.4 Discussion and Conclusion 2.5 The Modelling Method and Its Fitness for Purpose of Visualisation 2.6 Future Developments of 3D Reconstruction in Histology and Embryology References 3: Animated Guide to Represent a Novel Means of Gut-Brain Axis Communication 3.1 Introduction 3.1.1 Rationale 3.1.2 Research Aim 3.2 Literature Review 3.2.1 The Microbiome-Gut-Brain (MGB) Axis 3.2.1.1 Microbiome-Derived Carnitine Mimics (Hulme et al. 2020) 3.2.2 Learning Science with Animations 3.2.2.1 Multimedia Learning 3.2.2.2 Pros and Cons of Animation as a Learning Tool 3.2.2.3 Using Animation Efficiently 3.3 Materials and Methodology 3.3.1 Materials 3.3.1.1 Online Platforms 3.3.2 Design and Methods 3.3.3 Development 3.3.3.1 Segments 3.3.4 Production 3.3.4.1 Models 3.3.4.2 Animation 3.3.5 Post-production 3.3.5.1 After-Effects 3.3.5.2 Survey Design 3.3.6 Product Testing 3.3.6.1 Participants 3.3.6.2 Animation Distribution 3.4 Evaluation 3.4.1 Introduction 3.4.2 Methods 3.4.2.1 Manual Use 3.4.2.2 Participants 3.4.2.3 Apparatus 3.4.2.4 Design and Procedure 3.4.2.5 Results Knowledge Perceived Understanding Helpfulness of Media 3.4.3 Discussion 3.4.3.1 Knowledge 3.4.3.2 Perceived Understanding 3.4.3.3 Helpfulness of Media 3.4.4 Conclusion 3.5 Discussion and Conclusion 3.5.1 Key Findings 3.5.2 Contributions 3.5.3 Limitations 3.5.3.1 Population Validity 3.5.3.2 Construct Validity 3.5.3.3 Content Validity 3.5.3.4 Concurrent Validity 3.5.3.5 Pretesting 3.6 Conclusion References 4: Engaging with Children Using Augmented Reality on Clothing to Prevent Them from Smoking 4.1 Introduction 4.2 Background Context 4.2.1 The Current Situation Regarding Smoking in the UK and Beyond 4.2.2 Smoking Interventions 4.2.3 Emerging Technologies in Public Awareness and Education 4.2.3.1 Virtual Reality 4.2.3.2 Augmented Reality 4.3 Methods 4.3.1 Workflow 4.3.2 Storyboard 4.3.3 Digital 3D Anatomical Content 4.3.3.1 Segmentation 4.3.3.2 3D Modelling 4.3.3.3 Texturing 4.3.3.4 Animations 4.3.4 2D Content 4.3.4.1 Illustrations and Interface Design 4.3.4.2 Informational Animations 4.3.5 Application Development 4.3.5.1 Pattern Generation and Impression 4.3.5.2 Application Development Outcomes 4.4 Evaluation of the App 4.4.1 Research Questions 4.4.2 Participants 4.4.3 Materials 4.4.4 Procedure 4.4.5 Data Analysis 4.5 Results 4.5.1 Observational Analysis 4.5.2 Results of the Questionnaires 4.5.2.1 Usability 4.5.2.2 Additional Usability Input 4.5.2.3 Educational Aspect 4.5.2.4 Comments 4.6 Discussion 4.6.1 Review of the Research Findings 4.6.2 Review of Design and Development Process 4.6.3 Limitations and Future Developments 4.7 Conclusion References 5: Enabling More Accessible MS Rehabilitation Training Using Virtual Reality 5.1 Introduction 5.2 Background 5.2.1 Multiple Sclerosis 5.2.1.1 MS and Rehabilitation 5.2.1.2 Motivation and Rehabilitation 5.2.2 Hand Tracking Technology 5.2.2.1 Virtual Reality 5.2.3 Usability 5.3 Methods 5.3.1 Storyboard 5.3.2 Main Menu and Game Menu 5.3.3 Game 1: Piano 5.3.4 Game 2: Recycle 5.3.5 Game 3: Tidy Up 5.3.5.1 Experimental Procedure 5.4 Results 5.4.1 Observational Results 5.4.2 Questionnaire Results 5.4.2.1 Qualitative Data 5.4.3 Quantitative Data 5.4.3.1 SUS Data 5.4.3.2 ASQ Data 5.4.3.3 PQ Data 5.5 Discussion 5.5.1 Limitations 5.5.2 Future Improvements 5.6 Conclusion References 6: The Use of Augmented Reality to Raise Awareness of the Differences Between Osteoarthritis and Rheumatoid Arthritis 6.1 Introduction 6.2 Theoretical Background 6.2.1 Arthritis 6.2.2 Inflammation 6.2.3 Rheumatoid Arthritis and Osteoarthritis 6.2.4 Current Public Awareness Methods 6.2.5 Conventional Print-Based Approaches 6.2.6 Technologies in Public Awareness 6.2.7 Public Awareness in RA 6.3 Materials and Methods 6.3.1 Materials 6.3.1.1 Data 6.3.1.2 Software (Table 6.2) 6.3.1.3 Hardware 6.3.2 Methods 6.3.2.1 Initial Model Generation 6.3.2.2 Remodelling 6.3.2.3 Composing the Complete Models 6.3.2.4 Texturing 6.3.2.5 Patient and Public Involvement in Design Feedback on Content 6.3.2.6 Interactive Application Augmented Reality Setup Event System Function Activation and Deactivation of UI Panels Rotation of 3D Models Clickable Anatomical Structures Camera and Lights Skinning and Rigging Animating Importing the Animations into Unity Creation of Sprites 6.3.2.7 AR Poster Creation 6.4 Results 6.4.1 Final Interactive Application 6.4.1.1 Scene 0: Opening Scene 6.4.1.2 Scene 1: AR Scene 6.4.1.3 Scene 2: Labelled 3D Model Scene 6.4.1.4 Scene 3: Animation Hub Scene 6.4.1.5 Scene 4–6: Animations 6.5 Evaluation 6.5.1 Research Questions 6.5.2 Methods 6.5.2.1 Materials 6.5.2.2 Experimental Procedure 6.5.2.3 Participants Technology Literacy Prior Arthritis Awareness Knowledge 6.5.3 Data Analysis 6.5.3.1 Questionnaire Analysis: Healthy Joint, OA and RA Knowledge 6.5.3.2 Questionnaire Analysis: Usability 6.5.3.3 Observational Analysis 6.6 Discussion and Conclusion 6.6.1 Discussion 6.6.1.1 Design and Development 6.6.1.2 Evaluation Augmented Reality 3D Labelled Models Animations 6.6.2 Evaluation 6.6.2.1 Limitation and Future Development 6.7 Conclusion References 7: Understanding the Brain and Exploring the Effects of Clinical Fatigue: From a Patient’s Perspective 7.1 Introduction 7.2 Background Context 7.2.1 What Is Fatigue? 7.2.1.1 Physical Limitations of Fatigue 7.2.1.2 Social Limitations of Fatigue 7.2.1.3 Psychological Consequences of Fatigue 7.2.1.4 Scales of Measurement 7.2.1.5 Educational Applications Mobile Technology in Academia Mobile Technology in a Clinical Setting 7.2.1.6 The Use of Augmented Reality to Enhance Learning and Understanding 7.3 Methods 7.3.1 Workflow 7.4 Brain Model 7.4.1 Segmentation 7.4.2 3D Modelling 7.4.2.1 ZBrush 7.4.2.2 UV Mapping and Texturing 3Ds Max ZBrush 7.4.3 The Animation 7.4.3.1 Animation Audio 7.4.4 The Application 7.4.4.1 The Animation Scene Patient and Public Involvement in the Design of the Application 7.4.4.2 The AR Scene 3D Object Scan Material Change 7.5 Evaluation 7.5.1 Methods 7.5.1.1 Participants 7.5.1.2 Materials 7.5.2 Experimental Protocol 7.5.2.1 Pretest 7.5.2.2 Application 7.5.2.3 Posttest 7.5.3 Data Analysis 7.5.4 Results of the Questionnaire 7.5.4.1 Brain Anatomy 7.5.4.2 Fatigue 7.5.4.3 Usability 7.5.4.4 Augmented Reality 7.6 Discussion 7.6.1 Summary of Findings 7.6.2 Review of Design and Development Process 7.6.3 Future Development 7.7 Conclusion References 8: A Methodology for Visualising Growth and Development of the Human Temporal Bone 8.1 Introduction 8.2 Theoretical Background 8.2.1 Anatomy and Development of the Human Temporal Bone 8.2.2 Digital Technologies in Anatomy Education 8.3 Materials and Methods 8.3.1 Software 8.3.2 Concept 8.3.3 Development Pipeline 8.3.4 Modelling References 8.3.5 Practical Tests 8.3.5.1 Test Models 8.3.5.2 Deformation Setups Deformation Setup A: Approximated Joint Placement Deformation Setup B: Per-vertex Joint Placement Deformation Setup C: Blend Shapes 8.3.5.3 Results of the Practical Tests 8.3.6 3D Modelling 8.3.6.1 Textures 8.3.7 Application Development 8.3.7.1 Interaction 8.3.7.2 Touchscreen Scene 8.3.7.3 Managing Touch Input 8.3.7.4 Augmented Reality Scene 8.3.7.5 AR Marker 8.4 Results 8.4.1 3D Models 8.4.2 The Interactive Application 8.4.2.1 Scene Layout 8.4.2.2 Touchscreen Scene 8.4.2.3 Augmented Reality Scene 8.5 Conclusion References 9: Collect the Bones, Avoid the Cones: A Game-Based App for Public Engagement 9.1 Background Information 9.1.1 Public Engagement in Anatomical Sciences 9.1.2 Public Awareness of Helmet Safety 9.1.3 Serious Games and Game-Based Learning 9.1.4 Research Gap 9.2 Chapter Scope 9.3 Methods 9.3.1 Application Design 9.3.2 Application Workflow 9.4 Evaluation 9.4.1 Questionnaire Development 9.4.2 Participant Recruitment 9.4.3 Statistical Analysis 9.5 Results 9.5.1 Demographic Data 9.5.2 Knowledge Test and Confidence Scores 9.5.3 User Feedback 9.5.3.1 Usability 9.5.3.2 Presentation 9.5.3.3 Educational Value 9.5.3.4 Enjoyability 9.5.3.5 Overall Use 9.5.3.6 Open Text Feedback 9.6 Discussion 9.6.1 User Feedback 9.6.2 Strengths and Limitations of Research 9.6.3 Future Application Development 9.6.4 Future Research 9.7 Concluding Remarks References 10: A Serious Game on Skull Anatomy for Dental Undergraduates 10.1 Introduction 10.1.1 Chapter Scope 10.1.2 Background and Project Rationale 10.2 Methodology 10.2.1 Design Concept 10.2.2 Materials and Methods 10.2.2.1 Optimisation of the 3D Skull Model 10.2.2.2 Game Structure 10.2.2.3 3D Modelling 10.2.2.4 Game Development 10.3 Development Outcome 10.3.1 Game Content 10.3.2 Normal Anatomy Scene 10.3.3 Level Layout 10.3.3.1 Office 10.3.3.2 Artist’s Studio 10.3.3.3 Normal Anatomy Laboratory 10.3.3.4 Artist Responses 10.3.3.5 Client Responses 10.3.3.6 Feedback 10.3.3.7 Rewards 10.4 Evaluation 10.4.1 Methods 10.4.2 Discussion of Qualitative Feedback 10.5 Discussion and Future Developments 10.5.1 Discussion 10.5.1.1 Future Development References