دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Varun Bajaj, G. R. Sinha, Chinmay Chakraborty سری: Emerging Trends in Biomedical Technologies and Health Informatics ISBN (شابک) : 2021005666, 9780367707545 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 337 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب Biomedical Signal Processing for Healthcare Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش سیگنال زیست پزشکی برای برنامه های بهداشتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به بررسی استفاده از پردازش سیگنال های زیست پزشکی-EEG، EMG و ECG- در تجزیه و تحلیل و تشخیص بیماری های مختلف، به ویژه بیماری های مربوط به قلب و مغز می پردازد. در ترکیب با ابزارهای یادگیری ماشین و سایر روشهای بهینهسازی، تجزیه و تحلیل سیگنالهای زیستپزشکی با بهبود نتایج بیماران از طریق تشخیص زودهنگام و قابل اعتماد، به شدت به بخش مراقبتهای بهداشتی کمک میکند. بحث در مورد این روش ها درک بهتر، تجزیه و تحلیل و کاربرد پردازش سیگنال زیست پزشکی برای بیماری های خاص را ترویج می کند. مهمترین ویژگیهای پردازش سیگنال زیستپزشکی برای کاربردهای بهداشتی شامل سیگنالهای زیستپزشکی، دریافت سیگنالها، پیش پردازش و تجزیه و تحلیل، پس پردازش و طبقهبندی سیگنالها، و استفاده از تجزیه و تحلیل و طبقهبندی برای تشخیص بیماریهای مرتبط با مغز و قلب است. . بر سیگنالهای مغزی و قلبی تأکید میشود، زیرا تفسیرهای ناقصی توسط پزشکان از این جنبهها در چندین موقعیت انجام میشود و این تفاسیر جزئی منجر به عوارض بزرگی میشود.
This book examines the use of biomedical signal processing—EEG, EMG, and ECG—in analyzing and diagnosing various medical conditions, particularly diseases related to the heart and brain. In combination with machine learning tools and other optimization methods, the analysis of biomedical signals greatly benefits the healthcare sector by improving patient outcomes through early, reliable detection. The discussion of these modalities promotes better understanding, analysis, and application of biomedical signal processing for specific diseases. The major highlights of Biomedical Signal Processing for Healthcare Applications include biomedical signals, acquisition of signals, pre-processing and analysis, post-processing and classification of the signals, and application of analysis and classification for the diagnosis of brain- and heart-related diseases. Emphasis is given to brain and heart signals because incomplete interpretations are made by physicians of these aspects in several situations, and these partial interpretations lead to major complications.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Acknowledgements Editors Contributors Chapter 1 Automatic Sleep EEG Classification with Ensemble Learning Using Graph Modularity 1.1 Introduction 1.2 Related Work 1.3 Electroencephalography (EEG) 1.3.1 Waves in EEG 1.3.2 Types of Sleep 1.3.2.1 Sleep Cycle Stages 1.3.2.2 Physiological Changes between NREM and REM 1.3.2.3 Sleep Period over Life Span 1.3.2.4 Disorders in NREM and REM Sleep 1.4 The EEG Dataset 1.4.1 ISRUC-Sleep Database 1.4.2 Sleep-EDF Database 1.5 Graph Modularity 1.6 Ensemble Techniques 1.7 Methodology 1.7.1 Transforming the Statistical Features to Undirected Weighted Graph 1.7.2 Transformation of Statistical Features to Undirected Weighted Graph 1.8 Experimental Results 1.9 Conclusion References Chapter 2 Recognition of Distress Phase Situation in Human Emotion EEG Physiological Signals 2.1 Introduction 2.2 Literature Review 2.3 Materials and Methods 2.3.1 Acquisition of Dataset 2.3.2 Emotion Representation Modeling 2.3.3 Preprocessing and Transformation of the Physiological Signals 2.3.4 Feature Extraction Techniques 2.3.4.1 Histogram of Oriented Gradient 2.3.4.2 Local Binary Pattern 2.3.4.3 Histogram of Images 2.4 Classification Algorithm for Emotion Recognition 2.5 Experimental Models 2.6 Results and Discussion 2.7 Conclusion References Chapter 3 Analysis and Classification of Heart Abnormalities 3.1 Introduction and Background Information 3.2 Anatomy and Physiology, Biomechanics and Electrophysiology of the Heart 3.3 Introduction of ECG Signals 3.4 Various Heart-Related Abnormalities 3.5 Heart Abnormalities in Women 3.6 Summary References Chapter 4 Diagnosis of Parkinson’s Disease Using Deep Learning Approaches: A Review 4.1 Introduction 4.2 Objective of the Review 4.3 Literature Review 4.4 Deep Learning Framework 4.4.1 Data Acquisition 4.4.2 Preprocessing 4.4.3 Feature Selection 4.4.4 Classification 4.4.4.1 Convolution Neural Network (CNN) 4.4.4.2 Deep Belief Network (DBN) 4.4.4.3 Deep Neural Network (DNN) 4.5 Challenges and Opportunities 4.6 Conclusion References Chapter 5 Classifying Phonological Categories and Imagined Words from EEG Signal 5.1 Introduction 5.2 Methodology 5.2.1 Dataset 5.2.2 Wavelet Decomposition 5.2.3 Empirical Mode Decomposition 5.2.4 Channel Selection 5.2.5 Feature Extraction 5.2.6 Classifiers 5.2.7 Cross Validation 5.3 Result 5.3.1 Binary Classification Results 5.3.2 Multiclass Classification Results 5.4 Discussion and Conclusion References Chapter 6 Blood Pressure Monitoring Using Photoplethysmogram and Electrocardiogram Signals 6.1 Introduction 6.2 Physiological Models 6.2.1 BP Estimation Based on Pulse Transit Time 6.3 Pulse Arrival Time Instead of Pulse Transit Time 6.3.1 Performance Comparison: PAT vs. PTT 6.4 BP Estimation Approaches Based on PPG and ECG 6.4.1 Estimation Based on Manual Features 6.4.2 End-to-End Estimation Based on LSTM Networks 6.5 Conclusion References Chapter 7 Investigation of the Efficacy of Acupuncture Using Electromyographic Signals 7.1 Introduction 7.2 Electromyography Sensor 7.2.1 Materials and Components 7.2.2 EMG Circuit 7.2.3 Signal and Data Acquisition 7.3 Test Procedures 7.4 Results and Discussion 7.5 Hypothesis 7.6 Conclusion Appendix: Code Listing for EMG Sensor to Extract Data References Chapter 8 Appliance Control System for Physically Challenged and Elderly Persons through Hand Gesture-Based Sign Language 8.1 Introduction 8.1.1 Disability – A Public Health Issue 8.1.2 Disability Statistics in India 8.1.3 Barriers to Healthcare 8.2 Literature Survey 8.3 Preferable Techniques 8.3.1 Device-Based Techniques 8.3.2 Visual-Based Techniques 8.3.3 Device-versus Visual-Based Techniques 8.4 Existing System 8.5 Proposed Methodology 8.5.1 Data Glove-Based System 8.5.1.1 Objective 8.5.1.2 Theme 8.5.1.3 Summary 8.5.1.4 System Description 8.5.1.5 Learning Mode 8.5.1.6 Operational Mode 8.5.1.7 System Architecture 8.5.1.8 Raspberry Pi 8.5.1.9 Data Glove 8.5.1.10 Flex Sensor 8.5.1.11 Accelerometer Sensor 8.5.1.12 Features 8.5.1.13 General Description 8.5.1.14 System Flow 8.5.1.15 System Functionality 8.5.2 Camera-Based System 8.5.2.1 Phase I – Capturing Input Hand Gesture 8.5.2.2 Phase II – Recognition of Input Hand Gesture 8.5.2.3 Phase III – Appliance Control 8.6 Conclusion 8.7 Future Scope 8.8 Applications References Chapter 9 Computer-Aided Drug Designing – Modality of Diagnostic System 9.1 Introduction 9.1.1 Disease Selection 9.1.2 Target Identification and Validation 9.1.3 Lead Optimization 9.1.4 Preclinical Trials 9.1.5 Clinical trails 9.2 Working of Computer-Aided Drug Designing (CADD) 9.3 Factors Affecting Drug-Designing Process 9.4 Approaches of Computer-Aided Drug Designing (CADD) 9.4.1 Structure-Based Drug Design (SBDD) 9.4.2 Homology Modeling 9.4.2.1 Template Recognition 9.4.2.2 Target Alignment 9.4.2.3 Construction of Target Molecule 9.4.2.4 Optimization 9.4.2.5 Model Optimization 9.4.2.6 Evaluation 9.4.3 Ligand-Based Drug Design 9.5 Virtual Screening 9.5.1 Structure-Based Virtual Screening (SBVS) 9.5.2 Ligand Based Virtual Screening (LBVS) 9.6 Molecular Docking 9.7 Challenges in Computer-Aided Drug Design 9.8 Molecular Property Diagnostic Suite (MPDS) 9.8.1 Salient Features of the MPDS Tool for Tuberculosis 9.9 Structure of MPDSTB 9.9.1 Data Library 9.9.2 Data Processing 9.9.3 Data Analysis 9.9.4 Screening 9.9.5 Visualization 9.10 Application of Computer-Aided Drug Designing 9.11 Conclusion References Chapter 10 Diagnosing Chest-Related Abnormalities Using Medical Image Processing through Convolutional Neural Network 10.1 Introduction 10.2 Medical Image Processing 10.3 Applications 10.3.1 Chest X-Ray 10.3.2 Endoscopy 10.3.3 Magnetic Resonance Imaging MRI 10.3.4 Microscope 10.4 Method 10.4.1 Neuron 10.4.2 Neural Network Model 10.4.3 Deep Neural Network 10.4.4 Framework 10.4.5 Supervised Learning 10.4.6 Convolutional Neural Network 10.5 Methodology 10.5.1 Dataset Description 10.5.2 Abnormalities 10.5.3 Pre-processing 10.5.4 Modeling 10.5.5 Evaluation 10.5.6 Results 10.6 Conclusion References Chapter 11 Recent Trends in Healthcare System for Diagnosis of Three Diseases Using Health Informatics 11.1 Introduction 11.1.1 Machine Learning and Healthcare 11.1.2 Objective of This Study 11.2 Literature Survey 11.3 Materials and Methods 11.3.1 ML Algorithms Description 11.3.1.1 Support Vector Machine (SVM) 11.3.1.2 K-Nearest Neighbor (k-NN) 11.3.1.3 Multilayer Perceptron (MLP) 11.3.1.4 Naïve Bayes (NB) 11.3.1.5 Decision Tree (DT) 11.3.1.6 Ensemble Techniques 11.3.2 Evaluating ML Model’s Efficiency 11.4 Proposed System for Disease Classification Task 11.4.1 Disease Classification for Chronic Kidney Disease Prediction 11.4.1.1 Dataset Used and Preprocessing 11.4.1.2 Detailed Description of Classifiers 11.4.2 Disease Classification for Heart Disease 11.4.2.1 Dataset Used 11.4.3 Disease Classification System for Liver Disease 11.4.3.1 Dataset Used and Preprocessing 11.5 Experimental Results 11.5.1 Analysis for CKD Detection 11.5.2 Analysis for CVD Detection 11.5.3 Analysis for Liver Disease Detection 11.6 Conclusions References Chapter 12 Nursing Care System Based on Internet of Medical Things (IoMT) through Integrating Non-Invasive Blood Sugar (BS) and Blood Pressure (BP) Combined Monitoring 12.1 Introduction 12.2 Review of Existing Literature 12.2.1 The Conventional Way of Glucose Monitoring 12.2.2 Minimally Invasive Glucose Monitoring 12.2.3 Noninvasive Way of Glucose Monitoring 12.3 Importance of Continuous Monitoring Blood Sugar (BS) and Blood Pressure (BP) 12.4 Measurement of Blood Pressure (BP) and Blood Sugar (BS) 12.4.1 Mean of the Blood Pressure Measurement (MBP) 12.5 Methodology Detailing Stepwise Activities and Subactivities 12.5.1 Algorithm for Clinical Care System 12.5.2 Flowchart to Show Relationship between BS and BP 12.6 Architecture of the Proposed Design 12.6.1 Device-Level Architecture in Application of Internet of Medical Things (IoMT) 12.6.2 Intelligent Rule-Based System 12.6.3 Cloud-Based Architecture of the Proposed Device 12.6.4 Output-Based Design of Proposed Approach 12.7 Output-Based Sample Standard Diet Analysis 12.8 Likely Impacts of the Proposed Device 12.9 Parameters Effecting the Research 12.10 Conclusion Acknowledgements References Chapter 13 Eye Disease Detection from Retinal Fundus Image Using CNN 13.1 Introduction 13.1.1 Retinal Fundus Images 13.1.2 Machine Learning 13.1.3 Deep Learning 13.1.4 Convolutional Neural Network 13.2 Dataset Description 13.3 Experimental Results and Discussions 13.3.1 Data Augmentation 13.4 Conclusion Acknowledgments References Index