دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Sridhar Krishnan
سری:
ISBN (شابک) : 0128130865, 9780128130865
ناشر: Academic Press
سال نشر: 2021
تعداد صفحات: 334
[332]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Biomedical Signal Analysis for Connected Healthcare به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل سیگنال زیست پزشکی برای مراقبت های بهداشتی متصل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تجزیه و تحلیل سیگنال زیست پزشکی برای مراقبت های بهداشتی متصل پوشش دقیقی را بر روی چندین نسل از تکنیک ها ارائه می دهد، از جمله رویکردهای حوزه زمانی برای تشخیص رویداد، تجزیه و تحلیل طیفی برای تفسیر رویدادهای بالینی مورد علاقه، پردازش سیگنال متغیر با زمان برای درک جنبههای دینامیکی سیستمهای پیچیده زیستپزشکی، کاربرد اصول یادگیری ماشین در تصمیمگیری بالینی پیشرفته، کاربرد تکنیکهای پراکنده و سنجش فشاری در ارائه برنامههای کاربردی کم مصرف که برای طراحیهای پوشیدنی ضروری هستند، پارادایمهای نوظهور اینترنت اشیا، و مراقبت های بهداشتی مرتبط
Biomedical Signal Analysis for Connected Healthcare provides rigorous coverage on several generations of techniques, including time domain approaches for event detection, spectral analysis for interpretation of clinical events of interest, time-varying signal processing for understanding dynamical aspects of complex biomedical systems, the application of machine learning principles in enhanced clinical decision-making, the application of sparse techniques and compressive sensing in providing low-power applications that are essential for wearable designs, the emerging paradigms of the Internet of Things, and connected healthcare.
BIOMEDICAL SIGNAL ANALYSIS FOR CONNECTED HEALTHCARE Copyright Dedication About the author Preface 1 . Opportunities for connected healthcare 1. Introduction 2. Internet of things 2.1 Hardware 2.2 Software 3. Internet of medical things 3.1 Remote health monitoring 3.2 Smartphone application 4. Wearables for health monitoring 5. Biomedical signals 5.1 ECG signal 5.2 EEG signal 5.3 EMG signal 5.4 PPG signal 5.5 Speech signal 6. Objectives and organization of the book References 2 . Wearables design 1. Introduction 2. Wearables survey 2.1 EEG-based wearable devices 2.1.1 About EEG signals: properties and acquisition 2.1.2 Existing technology, drawbacks, and opportunities 2.1.3 Comparison with clinical EEG data 2.2 EMG-based wearable devices 2.2.1 About EMG signals: properties and acquisition 2.2.2 Existing technology, drawbacks, and opportunities 2.2.3 Comparison with clinical EMG data 2.3 ECG-based wearable devices 2.3.1 About ECG signals: properties and acquisition 2.3.2 Existing technology, drawbacks, and opportunities 2.3.3 Comparison with clinical ECG data 2.4 Other electronic wearables 2.4.1 Photoplethysmogram 2.4.2 Auscultation of body sounds 2.4.3 Motion and gait analysis 3. Wearables design considerations 3.1 Signal factors 3.2 Human factors 3.3 Environmental factors 3.4 Medical factors 3.5 Economic factors 3.6 Other critical factors 4. Open hardware design considerations 4.1 Allocation of hardware design 4.2 Hardware requirements and methods 4.2.1 PPG sensor description and bioinstrumentation 4.2.2 EMG sensor requirements and description 4.2.3 ECG sensor requirements and description 4.2.4 Microphone requirements and description 4.2.5 Motion analysis IMU requirements and description 4.2.6 Perspectives on wearables hardware design 5. Textile wearables 6. Contactless monitoring 7. Discussions References 3 . Biomedical signals and systems 1. Introduction 2. Analog to digital conversion 2.1 Sampling 2.2 Quantization 2.2.1 Noise power 2.2.2 Signal power: Vp2 3. Linear systems theory 3.1 Stability and causality 3.2 Frequency response 4. Digital filters design 4.1 Design of FIR filters 4.2 Design of IIR filters 4.2.1 Method 1: Pole-zero placement method of IIR filter design 4.2.2 Method 2: Impulse-invariant method of IIR filter design 4.2.3 Method 3: Bilinear z-transform method of IIR filter design 4.2.3.1 BZT method for LPF design 4.2.3.2 BZT method for HPF design 4.3 Phase response considerations 4.4 Homomorphic filtering 5. Digital filter realization 5.1 FIR filter realization 5.2 IIR filter realization 6. Applications 6.1 Application 1: Noise filtering techniques 6.1.1 Synchronized averaging 6.1.2 Moving average filter 6.1.3 Savitzky–Golay filter 6.2 Application 2: Heart rate estimation 7. Discussion References 4 . Adaptive analysis of biomedical signals 1. Introduction 2. Adaptive filter design 3. Adaptive filter algorithms 3.1 Search method 3.2 Least mean squares algorithm 4. Linear prediction 5. Time series modeling 5.1 Gain calculation 5.2 Selection of AR model order 5.3 Yule–Walker equations 5.4 Lattice filter 6. Applications 6.1 Interference removal in biomedical signals 6.2 Adaptive segmentation 6.3 Summary of parametric representation of a biomedical signal 6.4 Spectral estimation 7. Discussion References 5 . Advanced analysis of biomedical signals 1. Introduction 1.1 Evolution of feature extraction methods 2. Time-domain analysis 3. Frequency-domain analysis 4. Joint time-frequency analysis 4.1 Short-time Fourier Transform 4.2 Wavelet transform 4.3 Wigner–Ville Distributions 5. Signal decomposition analysis 5.1 Matching pursuits 5.2 Empirical mode decomposition 6. Advanced feature extraction and analysis 6.1 TFD-based feature analysis methods 6.2 Significance of feature extraction 7. Sparse analysis and compressive sensing 7.1 Sparse representations and dictionary learning 7.2 Compressive sensing 8. Discussion References 6 . Machine learning for biomedical signal analysis 1. Introduction 2. Machine learning fundamentals 3. Types of machine learning models 4. Challenges with machine learning models 5. Feature analysis 5.1 Types of features 5.2 Feature normalization 5.3 Feature selection/ranking 6. Common machine learning techniques 6.1 Logistic regression 6.1.1 General concept 6.1.2 Biomedical signal analysis considerations of logistic regression 6.2 Linear discriminant analysis 6.2.1 General concept 6.2.2 Biomedical signal analysis considerations of LDA 6.3 Naive Bayes classifier 6.3.1 General concept 6.3.2 Biomedical signal analysis considerations of naive Bayes 6.4 Decision tree 6.4.1 General concept 6.4.2 Biomedical signal analysis considerations of decision tree 6.5 Support vector machine 6.5.1 General concept 6.5.2 Kernel methods for nonlinear data 6.5.3 Biomedical signal analysis considerations of SVM 6.6 k-nearest neighbor 6.6.1 General concept 6.6.2 Biomedical signal analysis considerations of k-NN 6.7 K-means clustering (unsupervised approach) 6.7.1 General concept 6.7.2 Biomedical signal analysis considerations of K-means 6.8 Ensemble learning 6.8.1 General concept 6.8.2 Biomedical signal analysis considerations of ensemble learning 6.9 Deep learning 6.9.1 General concept 6.9.2 Biomedical signal analysis considerations of deep learning 6.10 Tiny ML 6.10.1 General concept 6.10.2 Biomedical signal analysis considerations of tiny ML 7. Machine learning performance metrics 7.1 How to measure the success of an ML classifier? 7.1.1 ROC curve 7.1.2 What is the right split between training and test datasets? 7.1.3 How to deal with small datasets? 8. Fairness and ethics in ML 9. Summary References 7 . Data connectivity and application scenarios 1. Introduction 2. Pulse code modulation 3. Delta modulation 4. Lossless data compression 4.1 Huffman code: an example of prefix free code 4.2 Lempel–Ziv–Welch 5. Line coding of waveforms 5.1 Advantages and disadvantages of line coding 6. Digital modulation 6.1 Advantages and disadvantages of digital modulation 7. Telecommunication networks 8. Wireless technologies 9. Mobile health 10. Electronic medical records 10.1 Advantages and disadvantages of EMR 11. Personal health record 11.1 Advantages and disadvantages of PHRs 12. Interoperability 13. Health information security and privacy 14. Human factors and user experiences 15. Application scenarios 15.1 Application scenario 1: Smartwatches and wearables for remote health monitoring 15.2 Application scenario 2: Textile wearables for telemonitoring of vital signs 15.3 Application scenario 3: Actigraphy for low-cost applications in monitoring sleep and daily activities 15.3.1 Proposed encoding scheme 15.3.2 Validation using machine learning 15.3.3 Signal-encoding results 15.3.4 Machine learning validation results of encoding process 16. Summary References Index