دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Mrutyunjay Suar PhD (editor), Namrata Misra PhD (editor), Neel Sarovar Bhavesh (editor) سری: ISBN (شابک) : 0323856500, 9780323856508 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 240 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Biomedical Imaging Instrumentation: Applications in Tissue, Cellular and Molecular Diagnostics (Volume 2) (Primers in Biomedical Imaging Devices and Systems, Volume 2) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ابزارهای تصویربرداری زیست پزشکی: کاربردها در تشخیص بافت، سلولی و مولکولی (جلد 2) (پرایمرها در دستگاه ها و سیستم های تصویربرداری زیست پزشکی، جلد 2) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ابزار تصویربرداری زیست پزشکی: برنامههای کاربردی در تشخیص بافت، سلولی و مولکولی اطلاعات اساسی در مورد روشهای تصویربرداری، بازسازی و پردازش، و کاربردهای آنها ارائه میکند. این کتاب بینش هایی را در مورد اصول تکنیک های مهم در زمینه تصویربرداری زیست پزشکی ارائه می دهد و همچنین کاربردهای مختلف در زمینه سلامت انسان را مورد بحث قرار می دهد. هر فصل مروری بر تکنیک، کاربردهای مختلف و چالشها و نوآوریهای اخیر برای بهبود بیشتر تکنیک را خلاصه میکند.
فصول شامل تکنیک های زیست پزشکی در تشخیص سلولی و مولکولی، نقش سی تی اسکن در تصویربرداری پزشکی و دندانپزشکی، سونوگرافی - فناوری و کاربردها در رادیولوژی بالینی، تصویربرداری رزونانس مغناطیسی، ابزار دقیق و استفاده از PET-CT Scan در انکولوژی، دوربین گاما و SPECT، نگهبان غربالگری سرطان پستان. تصویربرداری فراطیفی؛ تصویربرداری PA; طیفسنجی NIR و پیشرفتها در میکروسکوپ نوری و کاربردهای آن در تحقیقات زیستپزشکی.
این کتاب برای حمایت از یادگیری ایدهآل است و منبعی کلیدی برای دانشجویان و محققان اولیه شغلی در زمینههایی مانند تصویربرداری پزشکی و زیستپزشکی است. ابزار دقیق.
Biomedical Imaging Instrumentation: Applications in Tissue, Cellular and Molecular Diagnostics provides foundational information about imaging modalities, reconstruction and processing, and their applications. The book provides insights into the fundamental of the important techniques in the biomedical imaging field and also discusses the various applications in the area of human health. Each chapter summarizes the overview of the technique, the various applications, and the challenges and recent innovations occurring to further improve the technique.
Chapters include Biomedical Techniques in Cellular and Molecular Diagnostics, The Role of CT Scan in Medical and Dental Imaging, Ultrasonography - Technology & Applications in Clinical Radiology, Magnetic Resonance Imaging, Instrumentation and Utilization of PET-CT Scan in Oncology, Gamma Camera and SPECT, Sentinel of Breast Cancer Screening; Hyperspectral Imaging; PA Imaging; NIR Spectroscopy, and The Advances in Optical Microscopy and its Applications in Biomedical Research.
This book is ideal for supporting learning, and is a key resource for students and early career researchers in fields such as medical imaging and biomedical instrumentation.
Front cover Half title Full title Copyright Contents Contributors Preface CHAPTER 1 - Biomedical techniques in cellular and molecular diagnostics: Journey so far and the way forward 1.1 Biomedical imaging technology 1.1.1 CT scan 1.1.2 Ultrasound imaging 1.1.3 Magnetic resonance imaging 1.1.4 Positron emission tomography scans 1.1.5 Single-photon emission computerized tomography 1.1.6 Mammography 1.1.7 Hyperspectral imaging 1.1.8 Photoacoustic (PA) imaging 1.1.9 Near-infrared spectroscopy (NIRS) 1.1.10 Microscopy imaging 1.2 Way forward References CHAPTER 2 - Role of CT scan in medical and dental imaging 2.1 Introduction to computed tomography 2.2 Benefits and uses of CT scan 2.3 Issues regarding CT scan 2.4 Technical parameters and clinical applications 2.4.1 Head and neck 2.4.2 Lung 2.4.3 Kidney 2.4.4 Liver 2.4.5 Pancreas 2.4.6 Vascular system 2.4.7 Heart 2.4.8 Bone 2.5 Advancement in CT scans 2.5.1 Extreme MDCT 2.5.2 Iterative reconstruction 2.5.3 Dual-energy CT 2.5.4 Phase-contrast CT 2.5.5 Cone beam CT 2.6 Application of CBCT in dentistry 2.6.1 CBCT in dental implantology 2.6.2 CBCT in oral and maxillofacial surgery 2.6.3 CBCT in endodontics 2.6.4 Applications in orthodontics 2.6.5 Pediatric dentistry 2.6.6 Periodontics 2.6.7 Forensic dentistry 2.7 Conclusion References CHAPTER 3 - Ultrasongraphy: Technology and applications in clinical radiology 3.1 Introduction 3.2 Properties of sound 3.3 Interaction between ultrasound and matter 3.3.1 Reflection 3.3.2 Refraction 3.3.3 Absorption 3.4 Fundamental technology 3.4.1 Piezoelectricity and production of ultrasound 3.5 Instrumentation and image formation 3.5.1 Transmitter 3.5.2 Beam former 3.5.3 Transducer 3.5.3.1 Parts of the transducer 3.5.3.2 Probe construction 3.5.4 Receiver 3.5.5 Image processor/scan converter 3.5.6 Image display 3.6 Image representation and clinical application 3.6.1 Modes of ultrasound 3.6.1.1 A-mode (amplitude mode) 3.6.1.2 M-mode (motion mode) 3.6.1.3 B-mode (brightness mode) 3.6.1.4 Doppler ultrasound 3.6.2 Elastography 3.7 Conclusion CHAPTER 4 - Magnetic resonance imaging: Basic principles and advancement in clinical and diagnostics approaches in health care 4.1 Introduction 4.2 Basic principles of MRI 4.3 Components of MRI 4.3.1 Magnet 4.3.2 Gradient and shim coils 4.3.3 Radiofrequency coils (RFC) 4.3.4 Computer system 4.4 The basic concept of image acquisition and formation in an mri system 4.5 Contrast agents used in MRI 4.5.1 Magnetic susceptibility 4.5.2 Molecular tumbling/Larmor frequency and dipole interactions: A rationale of contrast 4.5.3 Nature of contrast agents 4.5.4 Classification of contrast agents 4.6 Intravenous agents 4.7 MRI contrast agents: based on the specific area of interest 4.7.1 Brain 4.7.2 Spine 4.7.3 Abdomen 4.7.4 Blood vessels 4.7.5 Breast imaging 4.6.6 Safety concerns associated with the use of contrast agents 4.8 Types of MRI and their applications 4.8.1 Anatomic imaging 4.8.2 Functional magnetic resonance imaging (fMRI) 4.8.3 Diffusion tensor imaging 4.8.4 Arterial spin labeling (ASL) 4.8.5 Neuromelanin-sensitive MRI 4.8.6 Quantitative susceptibility mapping 4.9 Current clinical applications of mri in cardiovascular diseases 4.9.1 Assessment of left and right ventricular volumes and mass, as well as systolic function 4.9.2 Assessment of myocardial viability and myocardial perfusion 4.9.3 Evaluation of congenital heart disease with shunt calculation 4.9.4 Evaluation and follow-up of valvular disease 4.9.5 Evaluation of pericardial disease 4.9.6 Evaluation of aortic disease 4.9.7 Evaluation of cardiac masses 4.9.8 Cardiomyopathies 4.9.9 Arrhythmogenic right ventricular cardiomyopathy 4.10 Role of MRI in diagnosis, staging, and disease evaluation in cancers 4.11 Contraindications and limitations of MRI 4.12 Conclusion References CHAPTER 5 - Current update about instrumentation and utilization of PET-CT scan in oncology and human diseases 5.1 Introduction 5.2 PET imaging and instrumentation 5.2.1 Principles of PET 5.2.2 Acquisition and image reconstruction: 2D versus 3D 5.2.3 Random correction 5.2.4 Attenuation correction 5.2.5 Scatter correction 5.2.6 Image reconstruction methods 5.2.7 The need for PET screening in diverse cancers 5.3 Clinical significances of PET in cancer 5.3.1 Clinical endorsement by PET-CT 5.3.2 Detailed staging with the help of PET 5.3.3 PET-CT as support therapy 5.4 Role of PET in the diagnosis of human diseases other than cancer 5.5 Conclusion References CHAPTER 6 - Revolutionizing medical diagnosis with SPECT imaging: Clinical applications of a nuclear imaging technology 6.1 Introduction 6.1.1 Historical origin and development of single photon emission tomography 6.2 Components and working of spect imaging device 6.3 Spect applications 6.3.1 SPECT/CT for benign conditions of the bone 6.3.2 SPECT/CT in neuroendocrine neoplasms 6.3.3 Radionuclide bone imaging for staging malignant metastases 6.4 Targeted imaging of prostate cancer with radioligands 6.5 Spect imaging using 67ga-citrate spect/ct in lymphoma 6.6 Spect imaging: nononcologic diseases 6.7 Conclusion References CHAPTER 7 - Mammography— sentinel of breast cancer management 7.1 Introduction 7.2 Evolution of mammography 7.3 Dissecting the mammography machine 7.4 How a mammogram is captured 7.5 Deciphering a mammogram 7.6 Limitations 7.7 Recent advances in mammography 7.7.1 Contrast-enhanced mammography 7.7.2 Three-dimensional mammography 7.7.3 Photon counting mammography 7.7.4 Galactography 7.8 Alternatives 7.9 Conclusion References CHAPTER 8 - Hyperspectral imaging: Current and potential clinical applications 8.1 Introduction 8.2 Concept 8.3 Principles 8.4 Techniques 8.5 Analysis 8.6 Biomedical uses 8.7 Use externally to the human body 8.7.1 Monitoring of patients in critical care 8.7.2 Diagnosis of skin cancers 8.7.3 Diagnosis and monitoring of other skin lesions 8.7.4 Screening for arthritis 8.7.5 Screening for vascular diseases 8.8 Use in endoscopies 8.8.1 Upper and lower gastrointestinal endoscopy 8.8.2 Endoscopic retrograde chonlangiopancreatogram (ERCP) and choledochoscopy 8.8.3 Video-assisted thoracic surgery (VATS) 8.8.4 Functional endoscopic sinus surgery and neuroendoscopy 8.8.5 Cystoscopy 8.9 Applications in surgery 8.9.1 Gastrointestinal anastomoses 8.9.2 Breast surgery 8.9.3 Renal surgery 8.9.4 Plastic surgery 8.9.5 Transplant surgeries 8.9.6 Colorectal cancer surgeries 8.10 Applications for imaging the eye 8.10.1 Retinal imaging 8.11 In vitro imaging 8.11.1 Models of wound healing 8.11.2 HSI-based light microscopy 8.11.3 Confocal microscopy 8.12 Conclusion References CHAPTER 9 - PA Imaging: A promising tool for targeted therapeutic implications in Cancer 9.1 Introduction 9.1.1 Principle 9.1.2 Breast Cancer 9.2 Angiogenesis 9.2.1 Vascular Endothelial Growth Factor 9.2.2 VEGF and Permeability 9.2.3 VEGF expression 9.2.4 Angiopoietins 9.3 Metastasis 9.3.1 Epithelial to Mesenchymal Transition (EMT) 9.3.2 Mitogen-activated protein kinase (MAPK) pathway 9.4 Nanomedicine 9.4.1 Gold nanomaterials 9.4.2 Single-walled carbon nanotubes (SWCNTs) 9.4.3 Semiconductor nanoparticles 9.4.4 Organic nanoparticles 9.4.5 Inorganic magnetic nanoparticles 9.4.6 Graphene nanomaterial 9.5 Biomedical applications of PAI in cancer References CHAPTER 10 - Near-infrared spectroscopy: An important noninvasive and sensitive tool for point-of-care biosensing application 10.1 Introduction 10.2 Fundamentals of near-infrared spectroscopy 10.2.1 Basic divisions in infrared region 10.2.2 Molecular overtones and near-infrared spectra 10.3 Instrumentation of near-infrared spectrophotometer 10.3.1 Instrumentation 10.3.2 Sampling techniques and measuring methods in near-infrared spectroscopy 10.3.2.1 Contact and noncontact-based sampling 10.3.2.2 Sample preparation for near-infrared analysis 10.3.2.3 Selection of a reference 10.4 Analyzing an infrared spectrum 10.4.1 Data treatment of an infrared spectrum 10.5 General applications of near-infrared spectroscopy 10.5.1 Non invasive technology in clinical chemistry 10.6 Nanomaterial-assisted near-infrared spectroscopy–based biosensing 10.6.1 Semiconductor quantum dots (QDs) 10.6.2 Carbon nanomaterials 10.6.3 Plasmonic nanoparticles and nanoshells 10.6.4 Dye encapsulating nanoparticles References CHAPTER 11 - Advances in microscopy and their applications in biomedical research 11.1 Microscopy as an integral part of biomedical research 11.2 Photon-based imaging 11.2.1 Fluorescence microscopy: Working, advancements, and biomedical applications 11.2.1.1 Advancements and biomedical applications of fluorescence microscopy 11.2.2 Confocal microscopy: Working, advancements, and biomedical applications 11.2.2.1 Advancements and biomedical applications of confocal microscopy 11.3 Automated imaging workstations for optical microscopy 11.4 Near-field scanning optical microscopy (NSOM): Principle and biomedical applications 11.5 Electron-based imaging: Electron microscopy (EM) 11.5.1 Scanning electron microscope: Working and biomedical applications 11.5.2 Transmission electron microscope: Working and biomedical applications 11.6 Resolution for photon-based and electron-based microscopes 11.7 Conclusion References Index Back cover