ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biomedical Applications of Nanoparticles

دانلود کتاب کاربردهای زیست پزشکی نانوذرات

Biomedical Applications of Nanoparticles

مشخصات کتاب

Biomedical Applications of Nanoparticles

ویرایش: 1 
نویسندگان:   
سری: Micro & Nano Technologies 
ISBN (شابک) : 0128165065, 9780128165065 
ناشر: William Andrew 
سال نشر: 2019 
تعداد صفحات: 507 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 مگابایت 

قیمت کتاب (تومان) : 30,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Biomedical Applications of Nanoparticles به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کاربردهای زیست پزشکی نانوذرات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کاربردهای زیست پزشکی نانوذرات



کاربردهای زیست‌پزشکی نانوذرات جالب‌ترین و بررسی‌شده‌ترین کاربردهای زیست‌پزشکی نانوذرات را توصیف می‌کند و بر تأثیر درمانی آنها تأکید می‌کند. پیشرفت های صورت گرفته در درمان بیماری های شدید، مانند سرطان و عفونت های دشوار، کاملاً با پیشرفت علمی و توسعه فناوری در زمینه علم مواد مرتبط است. نانوذرات کاربردهای درمانی متعددی دارند که با طراحی داروهای جدید، سیستم‌های تحویل، مواد درمانی و کمک آنها به توسعه استراتژی‌های پیشگیرانه شروع می‌شود. این کتاب تأثیر نانوذرات بر درمان عفونت‌ها، اثر ضد میکروبی و همچنین استراتژی‌های ضد سرطانی را برجسته می‌کند.

نمونه های موفقیت آمیز در سراسر کتاب همراه با تجزیه و تحلیل به منظور بهبود نتایج آینده درمان های جدید آورده شده است.


توضیحاتی درمورد کتاب به خارجی

Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies.

Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies.



فهرست مطالب

Cover
Biomedical
Applications of
Nanoparticles
Copyright
Contributors
Foreword
Preface
1
Introduction to cancer nanotherapeutics
	Cancer
		Introduction
		Main causes
		Types of cancers
		Current treatments
			Surgery
			Chemotherapy
			Radiation therapy
			Targeted therapy
			Immunotherapy
	Nanomedicine
		Nanotherapeutics
		Cellular and organ specific targets
	Drug delivery systems
	Cancer nanotherapy
		Biological barriers
		Cancer immunotherapy
		Delivery of cancer therapeutics
		Current studies for different types of cancers
	Conclusions
	Future perspectives
	References
2
Nanodrug delivery systems in cancer
	Introduction to cancer biology and antitumoral therapy
		Therapeutic approaches of neoplasia
	Nanoparticles use in cancer prevention, diagnosis and therapy
	Methods to obtain a controlled drug release
	Nanoparticles in clinical trials
		Carrier-based drug delivery systems
		Imagistic-magnetic resonance imaging (MRI)
		Plasmonic nanophotothermic therapy
		Gene therapy
	The small interference RNA (siRNA) approach in cancer therapy
	Conclusions
	Acknowledgments
	References
	Further reading
3
Nanoparticles and hyperthermia
	Introduction
	Using nanoparticles to increase hyperthermia effects
		Nanoparticle-tumor interactions
			Routes of administration
			On the tumor pathophysiology
		On the magnetism of nanoparticles
		On the magnetic heating mechanism
		Candidate nanoparticles for magnetic hyperthermia
	Magnetic hyperthermia therapy
		Clinical concerns for magnetic hyperthermia therapy
		Magnetic hyperthermia therapy from preclinical to clinical trials
	Conclusions
	Acknowledgments
	References
4
Pharmaceutical nanotechnology: Brief perspective on lipid drug delivery and its current scenario
	Introduction
		Lipids
	Classification of lipids and various lipid based excipients
		Fatty acids
		Glycerides
		Waxes
		Phospholipids
		Sterols
	Lipid based excipients
		Vegetable oils
		Vegetable oil derivatives
		Mixed glycerides and polar oils
		Digestion, absorption and circulation of lipids
		Principle behind the formation a lipid based nanoemulsion
		Formation of nanoemulsion by high and low energy emulsification methods
		High energy emulsification methods
		Low energy emulsification methods
	Different approaches in the development of lipid-based formulations
		Liquid lipid-based formulations
		Solid lipid based formulations
		Lipid as colloidal drug carriers
		Stability of lipid based nanoemulsions
		Scale up feasibility
	Toxicity and regulatory status of lipid excipients
	The path ahead for development of lipid-based delivery systems
		Book to bench experience
	Conclusion
	References
5
Lipid nanocarriers: Preparation, characterization and absorption mechanism and applications to improve oral bi ...
	Introduction to lipid nanocarriers
	Types of lipid nanocarriers
		Solid lipid nanoparticles (SLNs)
		Nanostructured lipid carriers (NLCs)
		Lipid drug conjugates (LDCs)
	Advantages and comparison of lipid nanocarriers
	Components and their selection
		Solid lipid nanoparticles (SLNs)
			Lipids
			Emulsifiers
		Nanostructured lipid carriers (NLCs)
			Lipids
			Emulsifiers
		Lipid drug conjugates (LDCs) based nanoparticles
	Methods to formulate drug-loaded lipid nanocarriers
		Microemulsion technique
		Solvent evaporation
		Solvent diffusion
		Homogenization technique
			High-pressure homogenization
			High-shear homogenization
			Hot homogenization and cold homogenization
		Phase inversion technique
		Membrane contractor
		Supercritical fluid technique
	Characterization of drug-loaded lipid nanocarriers
	Mechanism of drug absorption enhancement
		Absorption of free drug released from drug-loaded SLNs via gastrointestinal tract
		Passive absorption of lntact drug-loaded SLNs via blood capillary
		Passive absorption of intact drug-loaded SLNs via lymph capillary
		Active absorption of intact drug-loaded SLNs through intestinal epithelium
		Active absorption of intact drug-loaded SLNs via peyer's patches
	Method to elucidate absorption mechanism
		In vitro models
			Caco-2 cell culture model
			Chylomicrons model
		In vivo models
	Current investigations, limitations and future direction
		Current investigations and limitations
			Apomorphine
			Arteether
			Decitabine
			Docetaxel
			Domperidone
			Efavirenz
			Glibenclamide
			Lovastatin
			Methotrexate
			Progesterone
			Testosterone
			Vinpocetine
			Miscellaneous
		Future direction
	References
6
Liposomes as topical drug delivery systems: State of the arts
	Introduction
	Liposomes as topical/transdermal drug delivery for various skin disorders
	Conclusion
	References
	Further reading
7
Synthesis of hydrogels and their emerging role in pharmaceutics
	Introduction
	History
		Era of hydrogels
	Synthesis of hydrogel film
		Use of agave tequilana weber bagasse fibers to synthesize hydrogel film
			Information about plant
			Taxonomical classification
			Agave fiber treatment
			Hydrogel film preparation
		Use of bamboo fibers for synthesis of hydrogel
			Taxonomical classification
			Cellulose solution preparation
				NaOH based aqueous method
				NaOH/urea method
				DMAc/LiCl method
			Preparation of hydrogel
			Preparation of hydrogel films
				NaOH-based aqueous method
				NaOH/urea aqueous method
				DMAc/LiCl method
		Preperation of hydrogel from azadirachta indica
			Plant description
			Taxonomic classification
			Semi IPN hydrogel preparation
			Plant extract preparation
			Preparation of semi IPN hydrogel-silver nanocomposite
	Types of hydrogels
		Intelligent (or) smart hydrogels
		pH sensitive hydrogels
		Temperature-sensitive hydrogels (or) thermo gels
		Complexing hydrogels
		Thermally reversible gel
		Enzyme sensitive
		Light sensitive system
		Ion sensitive hydrogels
		Magnetically responsive hydrogels
		In situ hydrogels
		Thermosensitive hydrogel
	Properties of hydrogel
		Swelling property
		Mechanical properties
		Biocompatible properties
	Characteristics of hydrogels
	Importance of hydrogels
	Applications
		Hydrogels use as tissue engineering matrices
		Advantages and disadvantages of hydrogels as tissue engineering matrices
			Advantages
			Disadvantages as a tissue engineering matrices
		Manufacturing contact lenses
			Contact lenses
			Hard lenses
			Soft lenses
		Hydrogel dressing of wounds
			Advantages of this method
		Development of a new chitosan hydrogel for wound dressing
		Hydrogel-based drug delivery systems for poorly water-soluble drugs
	Application of hydrogel granules
		Dry applications
		Wet application
	Summary
	References
	Further reading
8
Targeting aspects of hydrogels in drug delivery
	Introduction
		General introduction
		Hydrogelators
		Synthesis of hydrogels
		Role of hydrogelators and cross linkers
			Chemically cross linked gels
		Self-assembly process
	Properties of hydrogelators and hydrogels
		Physicochemical properties
		Biocompatibility
		Biodegradability
		Morphological behavior
		Stimuli responsiveness
	Physiological parameters
		Physiological pH
		Temperature
		Electrolytic conditions
		Local physiochemical conditions
	Mechanism of drug delivery
		Light induced drug delivery
		Ultrasonic
		Magnetic field
	Types of formulations
		Macrogels
		Nanogels
		Swelling studies of nanogels
	Drug loading in nanogels
		Direct addition method
		Dialysis method
		Soaking method
	Drug release mechanisms
		Diffusion controlled release systems
		Chemically controlled systems
		Swelling controlled release systems
		Environmentally responsive systems
		Nanogels as potential gene and antisense delivery agents
		Toxic scavengers
		Encapsulation of enzyme in nanogels to enhance bio catalytic activity and stability
		Artificial chaperones
		Cancer chemotherapy
		Insulin delivery by nanogels
		Artificial vaccines
		Nanogels for treatment of neurodegenerative disorders
		Antiviral effect of drug-nanogel formulation
		Bone medicine
		Alzheimer's disease
		Drug delivery application
	Conclusion and future prospective
	References
	Further reading
9
Mathematical models of drug release from degradable hydrogels
	Introduction
	Degradation, swelling, and erosion
		Statistical-kinetic models
			Chain polymerized hydrogels
				Mathematical models
					Without cyclization
					With cyclization
				Experimental systems and validation
				Contributions and constraints
			Step polymerized hydrogels
				Mathematical model
				Experimental systems and validation
				Contributions and constraints
		Treelike theory
			Mathematical model
			Experimental systems and validation
			Contributions and constraints
		Zero order surface erosion
			Mathematical model
			Experimental system and validation
			Contribution and drawback
	Drug release
		Diffusion controlled
		Degradation controlled drug release
			Pendant drugs
				Statistical-kinetic models
					Mathematical model
					Experimental system and validation
					Contributions and drawbacks
				Diffusion-reaction model
					Mathematical model
					Experimental system and validation
					Contributions and drawbacks
			Surface erosion
				Mathematical models
				Experimental system and validation
				Contributions and constraints
		Diffusion/degradation controlled release from bulk degrading networks
			Statistical-kinetic model
				Mathematical model
				Experimental systems and validation
				Contributions and constraints
			Monte-Carlo simulations
				Mathematical model
				Experimental system and validation
				Contributions and constraints
	Disintegration time
		Mathematical model
		Experimental system and validations
		Contributions and constraints
	Conclusion
	References
10
Elevating toward a new innovation: Carbon nanotubes (CNTs)
	Molecular structure and characteristics of carbon nanotubes
		Single-walled carbon nanotubes (SWNTs)
		Multiwall carbon nanotubes (MWNTs)
	Functionalization of CNTs
		Covalent functionalization of CNTs
		Noncovalent functionalization of CNTs
	Solubility, toxicity, and distribution in biological system
	Interaction of CNTs with cells
	Applications of CNTs
		In regenerative medicines: nanocomposites and nanoscaffolds
		In vitro and in vivo delivery of therapeutics using CNTs
			Delivery of small drug molecules
			Delivery of biomacromolecules
		CNTs for gene delivery
		Stem cell related therapy
		Thermal therapy
		Biomedical applications of CNTs
		Photoluminescence imaging
		Photoacoustic imaging
		CNTs in diagnostics
	Preparation of CNT based therapeutics
		Arc discharge method
			Production of SWNTs
			Production of MWNTs
		Laser ablation method
		Chemical vapors deposition method
		Flame synthesis method
		Silane solution method
		Preparation of magnetic CNTs
	Summary and outlook
	References
	Further reading
11
Carbon dots as carriers for the development of controlled drug and gene delivery systems
	Introduction
	Structure and optical properties of carbon dots
	Carbon dots as carriers for drug delivery
	Carbon dots as probes for gene delivery
	Conclusions and prospectives
	References
12
Biomedical application of graphenes
	Introduction
		Definition of graphene
		Properties of graphene
	Methods of preparation of graphene
		Exfoliation
			The ``Scotch Tape Method´´
			Solution based exfoliation
		Growth on surfaces
			Epitaxial growth (Kim et al., 2009)
		Chemical vapor deposition
	Biofunctionalization of graphene and graphene-based nanomaterials
		Biofunctionalization with DNA
		Biofunctionalization with proteins
		Biofunctionalization with other biomolecules
	Biocompatability of graphenes
	Characterization of graphene
	Biomedical applications of graphenes
		Graphene based nanocomposites
			Solution blending/solution intercalation
			Melt mixing/melt intercalation
			In situ polymerization
			Electrospinning
			Electro-deposition
		Biosensors
			Detection of H2O2 and small biomolecules
			Dopamine detection (Shao et al., 2010)
			Graphene based fret biosensors
			DNA detection
		Drug delivery
			Cancer therapy
		Targeted drug delivery
			Photothermal therapy
			pH dependent drug release
		Scaffolds for tissue engineering
		Prosthetic retina and nerve
	Conclusion and future prospects
	References
	Further reading
13
Nanostructured organic-organic bio-hybrid delivery systems
	Drug delivery
	Conventional drug delivery systems
	Biopolymer matrices in drug delivery
	Bio-hybrid drug delivery systems
	Organic-organic bio-hybrid systems
		Cyclodextrin-based hybrid DDS
		Protein-polymer nanoparticles in DDS
		Liposome-hybrids DDS
		Lipid nanoparticles-hybrid DDS
	Smart drug delivery systems
	Conclusions
	References
	Further reading
14
Chitosan-based nanocomposites: Promising materials for drug delivery applications
	Introduction
		Inorganic compound: montmorillonite
		Organic compound: chitosan (CS)
	Bionanocomposites obtaining strategies
		Intercalation of the polymer in the mineral clay sheets
		In situ intercalative polymerization
		Melt intercalation
		Template synthesis
	Characterization
		X-Ray fluorescence (XRD)
		X-Ray diffraction (XRD)
		Infrared spectroscopy (IR)
		Thermal analysis: differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)
		Scanning electronic microscopy (SEM)
	Toxicity studies
	Smectites-chitosan for drug delivery purposes
		Determination of the in vitro drug release from bionancocomposites
			Dialysis bag technique
			Paddle method
			Franz-diffusion cell
		Mathematical analysis of drug release kinetics
			Zero order release kinetics
			First-order model
			Higuchi model
			Hixson-crowell model
			Korsmeyer-peppas model
		Mechanisms of controlling drug release from nanocomposite systems
			Burst release effect
			Mechanisms of release of the drug incorporated deeply into the polymer/mineral clay composite system
				Diffusion and swelling of the polymeric matrix
				Erosion of the polymeric matrix
	In vitro mucoadhesion determination of polymer-mineral clay nanocomposites
		Methods to determinate mucoadhesion
			TA-XT plus texture analyzer
			Mucus glycoprotein assay
			Scanning electron microscopy (SEM) for mucoadhesion
			Mucin particle method
	Nanocomposite as bioadhesive-drug delivery systems for medical and pharmaceutical applications
	Conclusions
	References
15
New advances in chronic lymphocytic leukemia treatment: Biodegradable ZnO hybrid cluster nanoparticle as anti ...
	Introduction
	Nanotechnology
	CHR BNP system: engineered synergistic treatment devices
	Combination drug advancements and mab synergism in clinical trials
	BNP systems as treatment modalities for CLL
		Cyclophosphamide
		Fludarabine
		Bendamustine
	Nanoparticle synthesis and characterization
	Mn doped ZnO nanoparticles
	Hybrid biodegradable-metal cluster nanoparticle systems
	Conclusions
	References
	Further reading
16
Nanobased scientific and technological solutions for the management of diabetes mellitus
	Introduction
	Nanotechnological progress in diagnosis of diabetes
	Nanotechnological progress in diabetes therapeutic approaches
		Nanosystems for the oral delivery of insulin
		Nanotechnological solutions for the delivery of insulin by parenteral pathways
		Nanotechnological solution to improve the delivery of antidiabetic drugs
	Progress in nanotheranostics platforms for the management of diabetic patients
	Challenges for the development of nanobased therapeutic and diagnosis strategies for diabetes control
	References
	Further reading
17
Nuclear medicine and radiopharmaceuticals for molecular diagnosis
	Radiopharmaceuticals and radiopharmacy
		Properties of ideal diagnostic pharmaceuticals
			Pure gamma emitter
			100KeV < gamma energy < 250KeV
			Effective half-life = 1.5 X test duration
			High target/nontarget ratio
			Minimal radiation dose to patient and nuclear medicine personnel
			Chemical reactivity
			Simple preparation and quality control
			Inexpensive, readily available radiopharmaceutical
		Radioactive decay
			Alpha decay
			Beta decay
			Gamma decay
	Nuclear medicine
		Nuclear medicine imaging technologies
			Gamma camera
			Single photon emission computed tomography (SPECT)
			Positron emission tomography (PET)
			Hybrid systems
			Comparison of SPECT, PET and hybrid systems
		Advantages of nuclear imaging over other anatomical imaging technologies
	Nuclear imaging for cancer diagnosis
		Cancer staging
		Detection of recurrence
		Follow up response to treatment
		Response to evaluation
	Advantages and disadvantages of nuclear medicine imaging for molecular diagnostic
	Future
	References
	Further reading
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
Back Cover




نظرات کاربران