دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Alexandru Mihai Grumezescu
سری: Micro & Nano Technologies
ISBN (شابک) : 0128165065, 9780128165065
ناشر: William Andrew
سال نشر: 2019
تعداد صفحات: 507
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Biomedical Applications of Nanoparticles به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربردهای زیست پزشکی نانوذرات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کاربردهای زیستپزشکی نانوذرات جالبترین و بررسیشدهترین کاربردهای زیستپزشکی نانوذرات را توصیف میکند و بر تأثیر درمانی آنها تأکید میکند. پیشرفت های صورت گرفته در درمان بیماری های شدید، مانند سرطان و عفونت های دشوار، کاملاً با پیشرفت علمی و توسعه فناوری در زمینه علم مواد مرتبط است. نانوذرات کاربردهای درمانی متعددی دارند که با طراحی داروهای جدید، سیستمهای تحویل، مواد درمانی و کمک آنها به توسعه استراتژیهای پیشگیرانه شروع میشود. این کتاب تأثیر نانوذرات بر درمان عفونتها، اثر ضد میکروبی و همچنین استراتژیهای ضد سرطانی را برجسته میکند.
نمونه های موفقیت آمیز در سراسر کتاب همراه با تجزیه و تحلیل به منظور بهبود نتایج آینده درمان های جدید آورده شده است.
Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies.
Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies.
Cover Biomedical Applications of Nanoparticles Copyright Contributors Foreword Preface 1 Introduction to cancer nanotherapeutics Cancer Introduction Main causes Types of cancers Current treatments Surgery Chemotherapy Radiation therapy Targeted therapy Immunotherapy Nanomedicine Nanotherapeutics Cellular and organ specific targets Drug delivery systems Cancer nanotherapy Biological barriers Cancer immunotherapy Delivery of cancer therapeutics Current studies for different types of cancers Conclusions Future perspectives References 2 Nanodrug delivery systems in cancer Introduction to cancer biology and antitumoral therapy Therapeutic approaches of neoplasia Nanoparticles use in cancer prevention, diagnosis and therapy Methods to obtain a controlled drug release Nanoparticles in clinical trials Carrier-based drug delivery systems Imagistic-magnetic resonance imaging (MRI) Plasmonic nanophotothermic therapy Gene therapy The small interference RNA (siRNA) approach in cancer therapy Conclusions Acknowledgments References Further reading 3 Nanoparticles and hyperthermia Introduction Using nanoparticles to increase hyperthermia effects Nanoparticle-tumor interactions Routes of administration On the tumor pathophysiology On the magnetism of nanoparticles On the magnetic heating mechanism Candidate nanoparticles for magnetic hyperthermia Magnetic hyperthermia therapy Clinical concerns for magnetic hyperthermia therapy Magnetic hyperthermia therapy from preclinical to clinical trials Conclusions Acknowledgments References 4 Pharmaceutical nanotechnology: Brief perspective on lipid drug delivery and its current scenario Introduction Lipids Classification of lipids and various lipid based excipients Fatty acids Glycerides Waxes Phospholipids Sterols Lipid based excipients Vegetable oils Vegetable oil derivatives Mixed glycerides and polar oils Digestion, absorption and circulation of lipids Principle behind the formation a lipid based nanoemulsion Formation of nanoemulsion by high and low energy emulsification methods High energy emulsification methods Low energy emulsification methods Different approaches in the development of lipid-based formulations Liquid lipid-based formulations Solid lipid based formulations Lipid as colloidal drug carriers Stability of lipid based nanoemulsions Scale up feasibility Toxicity and regulatory status of lipid excipients The path ahead for development of lipid-based delivery systems Book to bench experience Conclusion References 5 Lipid nanocarriers: Preparation, characterization and absorption mechanism and applications to improve oral bi ... Introduction to lipid nanocarriers Types of lipid nanocarriers Solid lipid nanoparticles (SLNs) Nanostructured lipid carriers (NLCs) Lipid drug conjugates (LDCs) Advantages and comparison of lipid nanocarriers Components and their selection Solid lipid nanoparticles (SLNs) Lipids Emulsifiers Nanostructured lipid carriers (NLCs) Lipids Emulsifiers Lipid drug conjugates (LDCs) based nanoparticles Methods to formulate drug-loaded lipid nanocarriers Microemulsion technique Solvent evaporation Solvent diffusion Homogenization technique High-pressure homogenization High-shear homogenization Hot homogenization and cold homogenization Phase inversion technique Membrane contractor Supercritical fluid technique Characterization of drug-loaded lipid nanocarriers Mechanism of drug absorption enhancement Absorption of free drug released from drug-loaded SLNs via gastrointestinal tract Passive absorption of lntact drug-loaded SLNs via blood capillary Passive absorption of intact drug-loaded SLNs via lymph capillary Active absorption of intact drug-loaded SLNs through intestinal epithelium Active absorption of intact drug-loaded SLNs via peyer's patches Method to elucidate absorption mechanism In vitro models Caco-2 cell culture model Chylomicrons model In vivo models Current investigations, limitations and future direction Current investigations and limitations Apomorphine Arteether Decitabine Docetaxel Domperidone Efavirenz Glibenclamide Lovastatin Methotrexate Progesterone Testosterone Vinpocetine Miscellaneous Future direction References 6 Liposomes as topical drug delivery systems: State of the arts Introduction Liposomes as topical/transdermal drug delivery for various skin disorders Conclusion References Further reading 7 Synthesis of hydrogels and their emerging role in pharmaceutics Introduction History Era of hydrogels Synthesis of hydrogel film Use of agave tequilana weber bagasse fibers to synthesize hydrogel film Information about plant Taxonomical classification Agave fiber treatment Hydrogel film preparation Use of bamboo fibers for synthesis of hydrogel Taxonomical classification Cellulose solution preparation NaOH based aqueous method NaOH/urea method DMAc/LiCl method Preparation of hydrogel Preparation of hydrogel films NaOH-based aqueous method NaOH/urea aqueous method DMAc/LiCl method Preperation of hydrogel from azadirachta indica Plant description Taxonomic classification Semi IPN hydrogel preparation Plant extract preparation Preparation of semi IPN hydrogel-silver nanocomposite Types of hydrogels Intelligent (or) smart hydrogels pH sensitive hydrogels Temperature-sensitive hydrogels (or) thermo gels Complexing hydrogels Thermally reversible gel Enzyme sensitive Light sensitive system Ion sensitive hydrogels Magnetically responsive hydrogels In situ hydrogels Thermosensitive hydrogel Properties of hydrogel Swelling property Mechanical properties Biocompatible properties Characteristics of hydrogels Importance of hydrogels Applications Hydrogels use as tissue engineering matrices Advantages and disadvantages of hydrogels as tissue engineering matrices Advantages Disadvantages as a tissue engineering matrices Manufacturing contact lenses Contact lenses Hard lenses Soft lenses Hydrogel dressing of wounds Advantages of this method Development of a new chitosan hydrogel for wound dressing Hydrogel-based drug delivery systems for poorly water-soluble drugs Application of hydrogel granules Dry applications Wet application Summary References Further reading 8 Targeting aspects of hydrogels in drug delivery Introduction General introduction Hydrogelators Synthesis of hydrogels Role of hydrogelators and cross linkers Chemically cross linked gels Self-assembly process Properties of hydrogelators and hydrogels Physicochemical properties Biocompatibility Biodegradability Morphological behavior Stimuli responsiveness Physiological parameters Physiological pH Temperature Electrolytic conditions Local physiochemical conditions Mechanism of drug delivery Light induced drug delivery Ultrasonic Magnetic field Types of formulations Macrogels Nanogels Swelling studies of nanogels Drug loading in nanogels Direct addition method Dialysis method Soaking method Drug release mechanisms Diffusion controlled release systems Chemically controlled systems Swelling controlled release systems Environmentally responsive systems Nanogels as potential gene and antisense delivery agents Toxic scavengers Encapsulation of enzyme in nanogels to enhance bio catalytic activity and stability Artificial chaperones Cancer chemotherapy Insulin delivery by nanogels Artificial vaccines Nanogels for treatment of neurodegenerative disorders Antiviral effect of drug-nanogel formulation Bone medicine Alzheimer's disease Drug delivery application Conclusion and future prospective References Further reading 9 Mathematical models of drug release from degradable hydrogels Introduction Degradation, swelling, and erosion Statistical-kinetic models Chain polymerized hydrogels Mathematical models Without cyclization With cyclization Experimental systems and validation Contributions and constraints Step polymerized hydrogels Mathematical model Experimental systems and validation Contributions and constraints Treelike theory Mathematical model Experimental systems and validation Contributions and constraints Zero order surface erosion Mathematical model Experimental system and validation Contribution and drawback Drug release Diffusion controlled Degradation controlled drug release Pendant drugs Statistical-kinetic models Mathematical model Experimental system and validation Contributions and drawbacks Diffusion-reaction model Mathematical model Experimental system and validation Contributions and drawbacks Surface erosion Mathematical models Experimental system and validation Contributions and constraints Diffusion/degradation controlled release from bulk degrading networks Statistical-kinetic model Mathematical model Experimental systems and validation Contributions and constraints Monte-Carlo simulations Mathematical model Experimental system and validation Contributions and constraints Disintegration time Mathematical model Experimental system and validations Contributions and constraints Conclusion References 10 Elevating toward a new innovation: Carbon nanotubes (CNTs) Molecular structure and characteristics of carbon nanotubes Single-walled carbon nanotubes (SWNTs) Multiwall carbon nanotubes (MWNTs) Functionalization of CNTs Covalent functionalization of CNTs Noncovalent functionalization of CNTs Solubility, toxicity, and distribution in biological system Interaction of CNTs with cells Applications of CNTs In regenerative medicines: nanocomposites and nanoscaffolds In vitro and in vivo delivery of therapeutics using CNTs Delivery of small drug molecules Delivery of biomacromolecules CNTs for gene delivery Stem cell related therapy Thermal therapy Biomedical applications of CNTs Photoluminescence imaging Photoacoustic imaging CNTs in diagnostics Preparation of CNT based therapeutics Arc discharge method Production of SWNTs Production of MWNTs Laser ablation method Chemical vapors deposition method Flame synthesis method Silane solution method Preparation of magnetic CNTs Summary and outlook References Further reading 11 Carbon dots as carriers for the development of controlled drug and gene delivery systems Introduction Structure and optical properties of carbon dots Carbon dots as carriers for drug delivery Carbon dots as probes for gene delivery Conclusions and prospectives References 12 Biomedical application of graphenes Introduction Definition of graphene Properties of graphene Methods of preparation of graphene Exfoliation The ``Scotch Tape Method´´ Solution based exfoliation Growth on surfaces Epitaxial growth (Kim et al., 2009) Chemical vapor deposition Biofunctionalization of graphene and graphene-based nanomaterials Biofunctionalization with DNA Biofunctionalization with proteins Biofunctionalization with other biomolecules Biocompatability of graphenes Characterization of graphene Biomedical applications of graphenes Graphene based nanocomposites Solution blending/solution intercalation Melt mixing/melt intercalation In situ polymerization Electrospinning Electro-deposition Biosensors Detection of H2O2 and small biomolecules Dopamine detection (Shao et al., 2010) Graphene based fret biosensors DNA detection Drug delivery Cancer therapy Targeted drug delivery Photothermal therapy pH dependent drug release Scaffolds for tissue engineering Prosthetic retina and nerve Conclusion and future prospects References Further reading 13 Nanostructured organic-organic bio-hybrid delivery systems Drug delivery Conventional drug delivery systems Biopolymer matrices in drug delivery Bio-hybrid drug delivery systems Organic-organic bio-hybrid systems Cyclodextrin-based hybrid DDS Protein-polymer nanoparticles in DDS Liposome-hybrids DDS Lipid nanoparticles-hybrid DDS Smart drug delivery systems Conclusions References Further reading 14 Chitosan-based nanocomposites: Promising materials for drug delivery applications Introduction Inorganic compound: montmorillonite Organic compound: chitosan (CS) Bionanocomposites obtaining strategies Intercalation of the polymer in the mineral clay sheets In situ intercalative polymerization Melt intercalation Template synthesis Characterization X-Ray fluorescence (XRD) X-Ray diffraction (XRD) Infrared spectroscopy (IR) Thermal analysis: differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) Scanning electronic microscopy (SEM) Toxicity studies Smectites-chitosan for drug delivery purposes Determination of the in vitro drug release from bionancocomposites Dialysis bag technique Paddle method Franz-diffusion cell Mathematical analysis of drug release kinetics Zero order release kinetics First-order model Higuchi model Hixson-crowell model Korsmeyer-peppas model Mechanisms of controlling drug release from nanocomposite systems Burst release effect Mechanisms of release of the drug incorporated deeply into the polymer/mineral clay composite system Diffusion and swelling of the polymeric matrix Erosion of the polymeric matrix In vitro mucoadhesion determination of polymer-mineral clay nanocomposites Methods to determinate mucoadhesion TA-XT plus texture analyzer Mucus glycoprotein assay Scanning electron microscopy (SEM) for mucoadhesion Mucin particle method Nanocomposite as bioadhesive-drug delivery systems for medical and pharmaceutical applications Conclusions References 15 New advances in chronic lymphocytic leukemia treatment: Biodegradable ZnO hybrid cluster nanoparticle as anti ... Introduction Nanotechnology CHR BNP system: engineered synergistic treatment devices Combination drug advancements and mab synergism in clinical trials BNP systems as treatment modalities for CLL Cyclophosphamide Fludarabine Bendamustine Nanoparticle synthesis and characterization Mn doped ZnO nanoparticles Hybrid biodegradable-metal cluster nanoparticle systems Conclusions References Further reading 16 Nanobased scientific and technological solutions for the management of diabetes mellitus Introduction Nanotechnological progress in diagnosis of diabetes Nanotechnological progress in diabetes therapeutic approaches Nanosystems for the oral delivery of insulin Nanotechnological solutions for the delivery of insulin by parenteral pathways Nanotechnological solution to improve the delivery of antidiabetic drugs Progress in nanotheranostics platforms for the management of diabetic patients Challenges for the development of nanobased therapeutic and diagnosis strategies for diabetes control References Further reading 17 Nuclear medicine and radiopharmaceuticals for molecular diagnosis Radiopharmaceuticals and radiopharmacy Properties of ideal diagnostic pharmaceuticals Pure gamma emitter 100KeV < gamma energy < 250KeV Effective half-life = 1.5 X test duration High target/nontarget ratio Minimal radiation dose to patient and nuclear medicine personnel Chemical reactivity Simple preparation and quality control Inexpensive, readily available radiopharmaceutical Radioactive decay Alpha decay Beta decay Gamma decay Nuclear medicine Nuclear medicine imaging technologies Gamma camera Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Hybrid systems Comparison of SPECT, PET and hybrid systems Advantages of nuclear imaging over other anatomical imaging technologies Nuclear imaging for cancer diagnosis Cancer staging Detection of recurrence Follow up response to treatment Response to evaluation Advantages and disadvantages of nuclear medicine imaging for molecular diagnostic Future References Further reading Index A B C D E F G H I K L M N O P Q R S T U V W X Z Back Cover