دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd ed. 2019
نویسندگان: Karol Miller
سری: Biological and Medical Physics, Biomedical Engineering
ISBN (شابک) : 9783030049959, 9783030049966
ناشر: Springer International Publishing
سال نشر: 2019
تعداد صفحات: 356
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
کلمات کلیدی مربوط به کتاب بیومکانیک مغز: فیزیک، فیزیک بیولوژیکی و پزشکی، بیوفیزیک، مهندسی پزشکی، جراحی مغز و اعصاب
در صورت تبدیل فایل کتاب Biomechanics of the Brain به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بیومکانیک مغز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This new edition presents an authoritative account of the current state of brain biomechanics research for engineers, scientists and medical professionals. Since the first edition in 2011, this topic has unquestionably entered into the mainstream of biomechanical research. The book brings together leading scientists in the diverse fields of anatomy, neuroimaging, image-guided neurosurgery, brain injury, solid and fluid mechanics, mathematical modelling and computer simulation to paint an inclusive picture of the rapidly evolving field.
Covering topics from brain anatomy and imaging to
sophisticated methods of modeling brain injury and
neurosurgery (including the most recent applications of
biomechanics to treat epilepsy), to the cutting edge methods
in analyzing cerebrospinal fluid and blood flow, this book is
the comprehensive reference in the field. Experienced
researchers as well as students will find this book
useful.
Foreword Contents 1 Introduction References 2 Human Brain Anatomy in 3D 2.1 Introduction 2.2 Structural (Gross) Neuroanatomy 2.2.1 Brain Parcellation 2.2.2 Cortical Areas 2.2.2.1 Lateral Cortical Surface 2.2.2.2 Medial Cortical Surface 2.2.2.3 Inferior Cortical Surface 2.2.3 Deep Grey Nuclei 2.2.4 Ventricular System 2.2.5 Sectional Neuroanatomy 2.2.6 Main Stereotactic Target Structures 2.2.7 Functional Areas 2.3 Vascular Neuroanatomy 2.3.1 Arterial System 2.3.1.1 Parcellation of Arterial System 2.3.1.2 Anterior Cerebral Artery 2.3.1.3 Middle Cerebral Artery 2.3.1.4 Posterior Cerebral Artery 2.3.1.5 Circle of Willis 2.3.2 Venous System 2.3.2.1 Parcellation of Venous System 2.3.2.2 Dural Sinuses 2.3.2.3 Cerebral Veins 2.3.3 Vascular Variants 2.4 Connectional Neuroanatomy 2.4.1 Commissural Tracts 2.4.2 Association Tracts 2.4.3 Projection Tracts 2.5 Recent Extensions and Future Brain Atlas Developments 2.6 Summary References Neuroanatomy Textbooks Print Brain Atlases Electronic Brain Atlases Other Materials Recent Brain Atlases Created (Products) Recent Extensions and Future Directions in Brain Atlasing 3 Introduction to Brain Imaging 3.1 Structural and Functional Brain Imaging: A Comparative Overview of Techniques 3.1.1 Magnetic Resonance Imaging (MRI)-Based Brain Imaging Techniques 3.1.1.1 Magnetic Resonance Imaging (MRI) 3.1.1.2 Functional Magnetic Resonance Imaging (fMRI) 3.1.1.3 Diffusion Tensor Imaging (DTI) 3.1.1.4 Ultrahigh Magnetic Fields 3.1.2 Electrophysiological Brain Imaging Techniques 3.1.2.1 Electroencephalography (EEG) and Magnetoencephalography (MEG) 3.1.2.2 Simultaneous fMRI and EEG 3.1.2.3 Intracranial EEG (iEEG) 3.1.3 Molecular Brain Imaging Techniques 3.1.3.1 Positron Emission Tomography (PET) 3.2 Clinical Applications of Brain Imaging for Image-Guided Neurosurgery in Epilepsy and Brain Tumour Patients 3.2.1 Structural MRI 3.2.2 Presurgical fMRI Mapping 3.2.2.1 Language and Memory Hemispheric Lateralisation 3.2.2.2 Functional Mapping in Patients with Malignant Brain Tumours 3.2.3 Presurgical DTI Mapping 3.2.4 Presurgical Electrophysiological Mapping 3.2.5 Presurgical PET 3.3 Summary and Conclusions References 4 Brain Tissue Mechanical Properties 4.1 Introduction 4.2 Shear Properties of Brain Tissue 4.2.1 Linear Viscoelastic Properties 4.2.1.1 Oscillatory Loading 4.2.1.2 Relaxation 4.2.1.3 Other Measurements 4.2.1.4 Elastography Measurements 4.2.2 Nonlinear Viscoelastic Properties 4.2.2.1 Oscillatory Response 4.2.2.2 Relaxation 4.2.2.3 Constant Loading Rate 4.2.2.4 Other Test Types 4.3 Compressive Properties of Brain Tissue 4.4 Tensile Properties of Brain Tissue 4.5 Constitutive Models for Brain Tissue 4.6 Discussion 4.6.1 Mechanical Characteristics of Brain Tissue 4.6.2 Methodological Considerations 4.7 Future Directions 4.8 Conclusions References 5 Modelling of the Brain for Injury Simulation and Prevention 5.1 Introduction 5.1.1 The Incidence and Prevalence of Traumatic Brain Injury 5.1.2 Investigating the Mechanisms of TBI 5.1.3 Finite Element Modelling of the Head and Brain 5.2 Challenges of Investigating TBI Using FE Head Models 5.2.1 Lack of Sufficient Biomechanical and Injury Data for Model Validations 5.2.2 Lack of Proven Injury Mechanism 5.3 Challenges of Developing a Biofidelic FE Head Model 5.3.1 Selection of Anatomical Features 5.3.2 Issues Related to Quality of Mesh 5.3.3 Numerical Convergence and Hourglass Energy 5.3.4 Boundary Conditions 5.3.5 Types of Injury to Be Simulated 5.3.6 Acquisition of Experimental Data Specifically Conducted for Model Validation 5.4 Revamp FE Modelling of Human Head: A Look into the Future 5.5 Conclusions References 6 Biomechanical Modelling of the Brain for Neurosurgical Simulation and Neuroimage Registration 6.1 Introduction 6.1.1 Neurosurgical Simulation for Operation Planning, Surgeon Training and Skills Assessment 6.1.2 Image Registration in Image-Guided Neurosurgery 6.2 Biomechanics of the Brain: Modelling Issues 6.2.1 Geometry 6.2.2 Boundary Conditions 6.2.3 Loading 6.2.4 Models of Mechanical Properties of Brain Tissue 6.2.5 Model Validation 6.3 Application Example: Computer Simulation of Brain Shift 6.3.1 Generation of Computational Grids: From Medical Images to Finite Element Meshes 6.3.2 Displacement Loading 6.3.3 Boundary Conditions 6.3.4 Mechanical Properties of the Intracranial Constituents 6.3.5 Solution Algorithm 6.3.6 Results and Validation 6.3.6.1 Qualitative Evaluation 6.3.6.2 Quantitative Evaluation 6.3.6.3 Results 6.4 Conclusions References 7 Biomechanical Modelling of the Brain for Neuronavigation in Epilepsy Surgery 7.1 Introduction 7.1.1 Background 7.1.2 Modelling the Intra-operative Deformation 7.2 Computing Brain Deformations Due to Insertion of Invasive Electrodes 7.2.1 Geometry 7.2.2 Finite Element Meshing 7.2.3 Boundary Conditions 7.2.4 Loading 7.2.5 Material Properties 7.2.6 Solution Algorithm and Software 7.3 Results 7.4 Conclusions References 8 Dynamics of Cerebrospinal Fluid: From Theoretical Models to Clinical Applications 8.1 Introduction 8.2 Physiology and Pathophysiology 8.3 Model of CSF Circulation 8.4 Infusion Test 8.5 Long-Term ICP Monitoring 8.6 Compensatory Parameters Derived from the Infusion Test and ICP Monitoring 8.6.1 RCSF and Pb 8.6.2 Pulsatility and Pulse Amplitude 8.6.3 Elastance Coefficient (or Elasticity) 8.6.4 Pressure-Volume Curve and Its Hysteresis 8.6.5 ICP Waveform Components 8.6.6 Derived Parameters, RAP Index 8.7 Pulsatile Flow of CSF: Phase-Contrast MRI Perspective 8.8 Pulsatile CSF Flow-Basic Models 8.9 Methodology of Phase-Contrast MRI 8.10 Clinical Applications 8.10.1 Differentiation Between Brain Atrophy and Normal Pressure Hydrocephalus 8.10.2 Noncommunicating and Acute Communicating Hydrocephalus 8.10.3 Testing of CSF Dynamics in Shunted Patients 8.10.4 Phase-Contrast MRI in Clinical Practice 8.11 Conclusion References 9 Modelling of Cerebrospinal Fluid Flow by Computational Fluid Dynamics 9.1 Introduction 9.2 Procedural Steps in CFD Modelling of CSF Dynamics 9.2.1 Obtaining the Model Domain 9.2.2 Spatial Discretization 9.2.3 Boundary and Initial Conditions 9.2.4 Calculating the Flow 9.3 Existing CFD Models 9.3.1 Ventricular Space 9.3.2 Subarachnoid Space 9.3.2.1 Normal Physiologic Conditions 9.3.2.2 Syringomyelia 9.3.2.3 Chiari Malformation 9.3.2.4 Intrathecal Drug Delivery and Solute Transport 9.3.3 Perivascular Space 9.4 Conclusion References 10 Finite Element Algorithms for Computational Biomechanics of the Brain 10.1 Introduction 10.2 Algorithms for Injury Biomechanics 10.3 Algorithms for Surgery Simulation 10.4 Algorithms for Neurosurgery Modelling 10.4.1 Dynamic Relaxation Algorithm 10.4.1.1 Dynamic Relaxation Algorithm: Maximum Eigenvalue Am and Mass Matrix 10.4.1.2 Dynamic Relaxation Algorithm: Estimation of the Minimum Eigenvalue A0 10.4.1.3 Dynamic Relaxation Algorithm: Termination Criteria 10.5 Element Formulation for Finite Element Algorithms for Surgery Simulation and Neurosurgery Modelling 10.5.1 Volumetric Locking 10.5.2 Stability of Under-integrated Hexahedral Elements: Hourglassing 10.6 Modelling of the Brain-Skull Interactions for Image-Guided Neurosurgery: Efficient Finite Sliding Contact Algorithm 10.7 Real-Time Computations Without Supercomputers: Increasing Computation Speed Through Algorithm Implementation on Graphics Processing Unit (GPU) 10.8 Verification of Finite Element Algorithms of Computational Biomechanics 10.8.1 Hourglass Control 10.8.2 Volumetric Locking 10.8.3 Dynamic Relaxation: Steady State Computation 10.8.4 Brain-Skull Interface: Contact Algorithm 10.9 Conclusions References 11 Meshless Algorithms for Computational Biomechanicsof the Brain 11.1 Introduction 11.2 Shape Functions for Meshless Algorithms for Computing Soft Tissue Deformations 11.3 Spatial Integration Schemes for Meshless Algorithms for Computing Soft Tissue Deformations 11.4 Visibility Criterion for Modelling of Surgical Dissection and Soft Tissue Rupture 11.5 Stability of Explicit Dynamics Meshless Algorithms 11.6 Algorithm Verification 11.6.1 Meshless Total Lagrangian Explicit Dynamics (MTLED) Framework 11.6.2 Modified Moving Least Square (MMLS) Shape Functions for Computing Soft Tissue Deformation 11.6.3 Visibility Criterion for Modelling of Surgical Dissection and Soft Tissue Rupture 11.7 Conclusions References 12 Intra-operative Measurement of Brain Deformation 12.1 Introduction 12.1.1 Brain Shift 12.2 Measuring Brain Shift 12.2.1 Quantitative Results 12.2.2 Qualitative Observations 12.2.3 Neuronavigation with Brain Shift 12.2.3.1 Replacing Pre-operative Images with Intra-operative Images 12.2.3.2 Brain Shift Compensation 12.3 Intra-operative Imaging Methods 12.3.1 Intra-operative MRI and Computed Tomography 12.3.2 Measuring Cortical Surface Displacement 12.3.3 Intra-operative Ultrasound 12.4 Conclusion References 13 Computational Biomechanics of the Brain in the OperatingTheatre 13.1 Introduction 13.2 Key Steps for Computational Modelling in the Operating Theatre 13.2.1 Before Surgery: Generation of a Patient-Specific Model 13.2.1.1 Geometry 13.2.1.2 Constitutive Law 13.2.1.3 Mechanical Properties 13.2.1.4 Known Boundary Conditions 13.2.1.5 Precomputations 13.2.2 In the Operating Theatre 13.2.2.1 Intra-operative Imaging 13.2.2.2 Processing Intra-operative Images 13.2.2.3 Intra-operative Boundary Conditions and Loads 13.2.2.4 Efficient Computational Methods 13.2.2.5 Modelling Tissue Resection 13.2.2.6 Rendering the Information 13.2.3 Validation and Clinical Studies 13.2.3.1 Practicability and Integration in the Surgical Workflow 13.3 Example of Clinical Application: Constraint-Based Simulation During Tumour Resection 13.3.1 Before Surgery: Model Generation 13.3.1.1 Geometries from MRI Images 13.3.1.2 Segmentation of the Vascular Tree 13.3.1.3 Mechanical Coupling 13.3.2 Intra-operative Datasets 13.3.2.1 Vascular Tree from Power Doppler Ultrasound Images 13.3.2.2 Probe Footprint from B-Mode Ultrasound Images 13.3.3 Biomechanical Model: Formulation 13.3.3.1 Constitutive Law and Parameters 13.3.3.2 Constraints 13.3.3.3 Solving Process 13.3.4 Constraint-Based Iterative Registration 13.3.4.1 Computing Pairings 13.3.4.2 Filtering Pairings 13.3.4.3 Sliding Constraints 13.3.5 Clinical Evaluation 13.3.5.1 Quantitative and Qualitative Results After Dural Opening 13.3.5.2 Experiments During Tumour Resection 13.3.5.3 Practicability 13.4 Conclusion References Index