دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Johnna S. Temenoff, Antonios G. Mikos سری: ISBN (شابک) : 0130097101, 9780130097101 ناشر: Pearson سال نشر: 2008 تعداد صفحات: 512 [503] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 Mb
در صورت تبدیل فایل کتاب Biomaterials: The Intersection of Biology and Materials Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Biomaterials: تقاطع زیست شناسی و علوم مواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents Foreword Preface Acknowledgments 1 Materials for Biomedical Applications 1.1 Introduction to Biomaterials 1.1.1 Important Definitions 1.1.2 History and Current Status of the Field 1.1.3 Future Directions 1.2 Biological Response to Biomaterials 1.3 Biomaterial Product Testing and FDA Approval 1.4 Types of Biomaterials 1.4.1 Metals 1.4.2 Ceramics 1.4.3 Polymers 1.4.4 Naturally Derived vs. Synthetic Polymers 1.5 Processing of Biomaterials 1.6 Important Properties of Biomaterials 1.6.1 Degradative Properties of Biomaterials 1.6.2 Surface Properties of Biomaterials 1.6.3 Bulk Properties of Biomaterials 1.6.4 Characterization Techniques 1.7 Principles of Chemistry 1.7.1 Atomic Structure 1.7.2 Atomic Models 1.7.3 Atomic Orbitals 1.7.4 Valence Electrons and the Periodic Table 1.7.5 Ionic Bonding 1.7.6 Covalent Bonding 1.7.7 Metallic Bonding 1.7.8 Secondary Forces Summary Problems References Additional Reading 2 Chemical Structure of Biomaterials 2.1 Introduction: Bonding and the Structure of Biomaterials 2.2 Structure of Metals 2.2.1 Crystal Structures 2.2.2 Crystal Systems 2.2.3 Defects in Crystal Structures 2.2.4 Solid State Diffusion 2.3 Structure of Ceramics 2.3.1 Crystal Structures 2.3.2 Defects in Crystal Structures 2.4 Structure of Polymers 2.4.1 General Structure 2.4.2 Polymer Synthesis 2.4.3 Copolymers 2.4.4 Methods of Polymerization 2.4.5 Crystal Structures and Defects 2.5 Techniques: Introduction to Material Characterization 2.5.1 X-Ray Diffraction 2.5.2 Ultraviolet and Visible Light Spectroscopy (UV-VIS) 2.5.3 Infrared Spectroscopy (IR) 2.5.4 Nuclear Magnetic Resonance Spectroscopy (NMR) 2.5.5 Mass Spectrometry 2.5.6 High-Performance Liquid Chromatography (HPLC): Size-Exclusion Chromatography Summary Problems References Additional Reading 3 Physical Properties of Biomaterials 3.1 Introduction: From Atomic Groupings to Bulk Materials 3.2 Crystallinity and Linear Defects 3.2.1 Dislocations 3.2.2 Deformation 3.3 Crystallinity and Planar Defects 3.3.1 External Surface 3.3.2 Grain Boundaries 3.4 Crystallinity and Volume Defects 3.5 Crystallinity and Polymeric Materials 3.5.1 Percent Crystallinity 3.5.2 Chain-Folded Model of Crystallinity 3.5.3 Defects in Polymer Crystals 3.6 Thermal Transitions of Crystalline and Non-Crystalline Materials 3.6.1 Viscous Flow 3.6.2 Thermal Transitions 3.7 Techniques: Introduction to Thermal Analysis 3.7.1 Differential Scanning Calorimetry Summary Problems References Additional Reading 4 Mechanical Properties of Biomaterials 4.1 Introduction: Modes of Mechanical Testing 4.2 Mechanical Testing Methods, Results and Calculations 4.2.1 Tensile and Shear Properties 4.2.2 Bending Properties 4.2.3 Time-Dependent Properties 4.2.4 Influence of Porosity and Degradation on Mechanical Properties 4.3 Fracture and Failure 4.3.1 Ductile and Brittle Fracture 4.3.2 Polymer Crazing 4.3.3 Stress Concentrators 4.4 Fatigue and Fatigue Testing 4.4.1 Fatigue 4.4.2 Fatigue Testing 4.4.3 Factors that Affect Fatigue Life 4.5 Methods to Improve Mechanical Properties 4.6 Techniques: Introduction to Mechanical Analysis 4.6.1 Mechanical Testing Summary Problems References Additional Reading 5 Biomaterial Degradation 5.1 Introduction: Degradation in the Biological Environment 5.2 Corrosion/Degradation of Metals and Ceramics 5.2.1 Fundamentals of Corrosion 5.2.2 Pourbaix Diagrams and Passivation 5.2.3 Contribution of Processing Parameters 5.2.4 Contribution of the Mechanical Environment 5.2.5 Contribution of the Biological Environment 5.2.6 Means of Corrosion Control 5.2.7 Ceramic Degradation 5.3 Degradation of Polymers 5.3.1 Primary Means of Polymer Degradation 5.3.2 Chain Scission by Hydrolysis 5.3.3 Chain Scission by Oxidation 5.3.4 Other Means of Degradation 5.3.5 Effects of Porosity 5.4 Biodegradable Materials 5.4.1 Biodegradable Ceramics 5.4.2 Biodegradable Polymers 5.5 Techniques: Assays for Extent of Degradation Summary Problems References Additional Reading 6 Biomaterial Processing 6.1 Introduction: Importance of Biomaterials Processing 6.2 Processing to Improve Bulk Properties 6.2.1 Metals 6.2.2 Ceramics 6.2.3 Polymers 6.3 Processing to Form Desired Shapes 6.4 Processing of Metals 6.4.1 Forming Operations 6.4.2 Casting Metals 6.4.3 Powder Processing of Metals 6.4.4 Rapid Manufacturing of Metals 6.4.5 Welding Metals 6.4.6 Machining of Metals 6.5 Processing of Ceramics 6.5.1 Glass Forming Techniques 6.5.2 Casting and Firing of Ceramics 6.5.3 Powder Processing of Ceramics 6.5.4 Rapid Manufacturing of Ceramics 6.6 Processing of Polymers 6.6.1 Thermoplasts vs. Thermosets 6.6.2 Forming Polymers 6.6.3 Casting Polymers 6.6.4 Rapid Manufacturing of Polymers 6.7 Processing to Improve Biocompatibility 6.7.1 Sterilization 6.7.2 Fixation of Natural Materials Summary Problems References Additional Reading 7 Surface Properties of Biomaterials 7.1 Introduction: Concepts in Surface Chemistry and Biology 7.1.1 Protein Adsorption and Biocompatibility 7.1.2 Surface Properties Governing Protein Adsorption 7.2 Physicochemical Surface Modification Techniques 7.2.1 Introduction to Surface Modification Techniques 7.2.2 Physicochemical Surface Coatings: Covalent Surface Coatings 7.2.3 Physicochemical Surface Coatings: Non-Covalent Surface Coatings 7.2.4 Physicochemical Surface Modification Methods with No Overcoat 7.2.5 Laser Methods for Surface Modification 7.3 Biological Surface Modification Techniques 7.3.1 Covalent Biological Coatings 7.3.2 Non-Covalent Biological Coatings 7.3.3 Immobilized Enzymes 7.4 Surface Properties and Degradation 7.5 Patterning Techniques for Surfaces 7.6 Techniques: Introduction to Surface Characterization 7.6.1 Contact Angle Analysis 7.6.2 Light Microscopy 7.6.3 Electron Spectroscopy for Chemical Analysis (ESCA) or X-ray Photoelectron Spectroscopy (XPS) 7.6.4 Attenuated Total Internal Reflectance Fourier Transform––Infrared Spectroscopy (ATR-FTIR) 7.6.5 Secondary Ion Mass Spectrometry (SIMS) 7.6.6 Electron Microscopy: Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) 7.6.7 Scanning Probe Microscopy (SPM): Atomic Force Microscopy (AFM) Summary Problems References Additional Reading 8 Protein Interactions with Biomaterials 8.1 Introduction: Thermodynamics of Protein Adsorption 8.1.1 Gibbs Free Energy and Protein Adsorption 8.1.2 System Properties Governing Protein Adsorption 8.2 Protein Structure 8.2.1 Amino Acid Chemistry 8.2.2 Primary Structure 8.2.3 Secondary Structure 8.2.4 Tertiary Structure 8.2.5 Quaternary Structure 8.3 Protein Transport and Adsorption Kinetics 8.3.1 Transport to the Surface 8.3.2 Adsorption Kinetics 8.4 Reversibility of Protein Adsorption 8.4.1 Reversible and Irreversible Binding 8.4.2 Desorption and Exchange 8.5 Techniques: Assays for Protein Type and Amount 8.5.1 High-Performance Liquid Chromatography (HPLC): Affinity Chromatography 8.5.2 Colorimetric Assays 8.5.3 Fluorescent Assays 8.5.4 Enzyme-linked Immunosorbent Assay (ELISA) 8.5.5 Western Blotting Summary Problems References Additional Reading 9 Cell Interactions with Biomaterials 9.1 Introduction: Cell-Surface Interactions and Cellular Functions 9.2 Cellular Structure 9.2.1 Cell Membrane 9.2.2 Cytoskeleton 9.2.3 Mitochondria 9.2.4 Nucleus 9.2.5 Endoplasmic Reticulum 9.2.6 Vesicles 9.2.7 Membrane Receptors and Cell Contacts 9.3 Extracellular Environment 9.3.1 Collagen 9.3.2 Elastin 9.3.3 Proteoglycans 9.3.4 Glycoproteins 9.3.5 Other ECM Components 9.3.6 Matrix Remodeling 9.3.7 ECM Molecules as Biomaterials 9.4 Cell–Environment Interactions that Affect Cellular Functions 9.4.1 Cell Survival 9.4.2 Cell Proliferation 9.4.3 Cell Differentiation 9.4.4 Protein Synthesis 9.5 Models of Adhesion, Spreading and Migration 9.5.1 Basic Adhesion Models: DLVO Theory 9.5.2 DLVO Theory Limitations and Further Models 9.5.3 Models of Cell Spreading and Migration 9.6 Techniques: Assays to Determine Effects of Cell-Material Interactions 9.6.1 Cytotoxicity Assays 9.6.2 Adhesion/Spreading Assays 9.6.3 Migration Assays 9.6.4 DNA and RNA Assays 9.6.5 Protein Production Assays: Immunostaining Summary Problems References Additional Reading 10 Biomaterial Implantation and Acute Inflammation 10.1 Introduction: Overview of Innate and Acquired Immunity 10.1.1 Characteristics of Leukocytes 10.1.2 Sources of Innate Immunity 10.2 Clinical Signs of Inflammation and Their Causes 10.3 Role of Tissue Macrophages and Neutrophils 10.3.1 Migration of Neutrophils 10.3.2 Actions of Neutrophils 10.4 Role of Other Leukocytes 10.4.1 Monocytes/Macrophages 10.4.2 Actions of Macrophages 10.4.3 Other Granulocytes 10.5 Termination of Acute Inflammation 10.6 Techniques: In Vitro Assays for Inflammatory Response 10.6.1 Leukocyte Assays 10.6.2 Other Assays Summary Problems References Additional Reading 11 Wound Healing and the Presence of Biomaterials 11.1 Introduction: Formation of Granulation Tissue 11.2 Foreign Body Reaction 11.3 Fibrous Encapsulation 11.4 Chronic Inflammation 11.5 Four Types of Resolution 11.6 Repair vs. Regeneration: Wound Healing in Skin 11.6.1 Skin Repair 11.6.2 Skin Regeneration 11.7 Techniques: In Vivo Assays for Inflammatory Response 11.7.1 Considerations in Development of Animal Models 11.7.2 Methods of Assessment Summary Problems References Additional Reading 12 Immune Response to Biomaterials 12.1 Introduction: Overview of Acquired Immunity 12.2 Antigen Presentation and Lymphocyte Maturation 12.2.1 Major Histocompatibility Complex (MHC) Molecules 12.2.2 Maturation of Lymphocytes 12.2.3 Activation and Formation of Clonal Populations 12.3 B Cells and Antibodies 12.3.1 Types of B Cells 12.3.2 Characteristics of Antibodies 12.4 T Cells 12.4.1 Types of T Cells 12.4.2 Helper T Cells (T[sub(h)]) 12.4.3 Cytotoxic T Cells (T[sub(c)]) 12.5 The Complement System 12.5.1 Classical Pathway 12.5.2 Alternative Pathway 12.5.3 Membrane Attack Complex 12.5.4 Regulation of the Complement System 12.5.5 Effects of the Complement System 12.6 Undesired Immune Responses to Biomaterials 12.6.1 Innate vs. Acquired Responses to Biomaterials 12.6.2 Hypersensitivity 12.7 Techniques: Assays for Immune Response 12.7.1 In Vitro Assays 12.7.2 In Vivo Assays Summary Problems References Additional Reading 13 Biomaterials and Thrombosis 13.1 Introduction: Overview of Hemostasis 13.2 Role of Platelets 13.2.1 Platelet Characteristics and Functions 13.2.2 Platelet Activation 13.3 Coagulation Cascade 13.3.1 Intrinsic Pathway 13.3.2 Extrinsic Pathway 13.3.3 Common Pathway 13.4 Means of Limiting Clot Formation 13.5 Role of the Endothelium 13.6 Tests for Hemocompatibility 13.6.1 General Testing Concerns 13.6.2 In Vitro Assessment 13.6.3 In Vivo Assessment Summary Problems References Additional Reading 14 Infection, Tumorigenesis and Calcification of Biomaterials 14.1 Introduction: Overview of Other Potential Problems with Biomaterial Implantation 14.2 Infection 14.2.1 Common Pathogens and Categories of Infection 14.2.2 Steps to Infection 14.2.3 Characteristics of the Bacterial Surface, the Biomaterial Surface, and the Media 14.2.4 Specific and Non-Specific Interactions Involved in Bacterial Adhesion 14.2.5 Summary of Implant-Associated Infections 14.3 Techniques for Infection Experiments 14.3.1 Characterizing Bacterial Surfaces 14.3.2 In Vitro and In Vivo Models of Infection 14.4 Tumorigenesis 14.4.1 Definitions and Steps of Tumorigenesis 14.4.2 Chemical vs. Foreign Body Carcinogenesis 14.4.3 Timeline for Foreign Body Tumorigenesis 14.4.4 Summary of Biomaterial-Related Tumorigenesis 14.5 Techniques for Tumorigenesis Experiments 14.5.1 In Vitro Models 14.5.2 In Vivo Models 14.6 Pathologic Calcification 14.6.1 Introduction to Pathologic Calcification 14.6.2 Mechanism of Pathologic Calcification 14.6.3 Summary and Techniques to Reduce Pathologic Calcification 14.7 Techniques for Pathologic Calcification Experiments 14.7.1 In Vitro Models of Calcification 14.7.2 In Vivo Models of Calcification 14.7.3 Sample Assessment Summary Problems References Additional Reading Appendix I: List of Abbreviations and Symbols Index A B C D E F G H I K L M N O P Q R S T U V W X Y Z