ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biomaterials for cancer therapeutics: evolution and innovation

دانلود کتاب بیومواد برای درمان سرطان: تکامل و نوآوری

Biomaterials for cancer therapeutics: evolution and innovation

مشخصات کتاب

Biomaterials for cancer therapeutics: evolution and innovation

ویرایش: [Second edition] 
نویسندگان:   
سری: Woodhead Publishing Series in Biomaterials 
ISBN (شابک) : 9780081029831, 0081029837 
ناشر: Woodhead Publishing, an imprint of Elsevier 
سال نشر: 2020 
تعداد صفحات: xxvi, 755 Seiten : Illustratione 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Biomaterials for cancer therapeutics: evolution and innovation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب بیومواد برای درمان سرطان: تکامل و نوآوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover......Page 1
Biomaterials for Cancer Therapeutics: Evolution and Innovation......Page 4
Copyright Page......Page 5
Contents......Page 6
List of contributors......Page 20
Preface......Page 26
1.1 Introduction......Page 28
1.2 General classification of cancers......Page 30
1.3 Early detection—still the best medicine......Page 31
1.4 Cancer genetics and epigenetics......Page 32
1.5 Factors that make a cell cancerous......Page 34
1.6 The concept of a transition from chronic inflammation to cancer......Page 35
1.7 Current methods to treat various cancers......Page 36
1.8 Cancer as a real estate concept—location, location, location......Page 38
1.9 Areas of greatest unmet need in treating cancers......Page 40
1.10 Conclusion and future trends......Page 42
References......Page 44
2.1.1 Phenotypic overview of cancer progression......Page 50
2.1.2 Evolution of the organization of nuclei in cancer cells......Page 51
2.1.4 The extracellular matrix component of the tumor microenvironment......Page 52
2.1.5 Drug resistance in cancer......Page 54
2.2.1 Matrix remodeling in cancerous tissue......Page 55
2.2.2 Influence of matrix stiffness and tissue geometry on cancer phenotype......Page 56
2.2.3 Future directions: design of “intelligent” biomaterials that respond to microenvironmental changes......Page 58
2.3.1 Physical properties of the cell nucleus......Page 60
2.3.2 Nuclear proteins involved in mechanosensing......Page 61
2.3.3 Future directions: identification of internal nuclear features that have the ability to link microenvironmental chang.........Page 63
2.4.1 Drug resistance and survival in cancer cell populations......Page 64
2.4.2 Nuclear dynamics and alterations in genome functions......Page 66
2.4.3 Future directions: platforms and biomaterials to integrate nuclear reorganization and cell survival in tumors......Page 67
2.5 Conclusion......Page 69
References......Page 70
3.1 Introduction......Page 80
3.2.1.2 Biological activities of polyethyleneimine......Page 81
3.2.2.1 Pluronic polymers as an inactive ingredient of drug products......Page 88
3.2.2.2 Biological activities of Pluronics......Page 89
3.2.3 Polymeric drugs......Page 90
3.3.1.2 Antitumor activities of chitosan......Page 91
3.3.2.1 Hyaluronic acid in drug delivery and wound healing......Page 92
3.3.3.2 Biological activities of chondroitin sulfate......Page 94
3.3.5.1 Pectin as a drug carrier......Page 95
3.4.2 Antiproliferative or immune adjuvant activities of polypeptides......Page 96
3.5.2 Anticancer activities of polar lipids......Page 98
3.5.3 Immune activities of polar lipids......Page 99
3.6.1.1 α-Tocopherol succinate as a drug carrier......Page 100
3.6.2.1 d-α-Tocopheryl polyethylene glycol 1000 succinate as a drug carrier......Page 102
3.7.1.2 Biological activities of iron oxide......Page 103
3.7.2.2 Biological activities of graphene oxide......Page 104
3.7.3 Others: Au, SiO2, and TiO2......Page 105
References......Page 107
4.1 Introduction......Page 122
4.2.1 Top-down approach......Page 123
4.2.2 Bottom-up approach......Page 124
4.3.1 Cellular uptake and hybrid nanocrystals......Page 126
4.3.2 Hybrid nanocrystals with environment-sensitive fluorophores......Page 129
4.4 In vivo performance......Page 133
4.5 Conclusion......Page 136
References......Page 137
5.1 Introduction......Page 144
5.2.1 Polymer therapeutics for cross-linking of antigens on the cell surface......Page 145
5.3 Polymeric drugs inhibiting chemokine receptors......Page 147
5.4.1 Multidrug resistance by P-glycoprotein......Page 150
5.4.2 Classes of polymeric P-glycoprotein inhibitors......Page 151
5.4.2.1.1 Recent examples of Pluronic-based delivery systems to reverse multidrug resistance......Page 152
5.4.2.1.2 Clinical trials of Pluronic-based formulations......Page 153
5.4.2.1.3 Mechanism of action for P-glycoprotein inhibition by Pluronics......Page 154
5.4.2.2 A polymeric derivative of vitamin E (d-α-tocopheryl polyethylene glycol succinate)......Page 155
5.4.2.2.1 d-α-Tocopheryl polyethylene glycol succinate as a P-glycoprotein inhibitor for overcoming multidrug resistance......Page 157
5.4.2.2.2.1 d-α-Tocopheryl polyethylene glycol succinate–biodegradable aliphatic polyester......Page 158
5.4.2.2.2.2 d-α-Tocopheryl polyethylene glycol succinate–hyaluronic acid......Page 159
5.4.2.2.2.4 Other classes of d-α-tocopheryl polyethylene glycol succinate–based polymer formulations......Page 160
References......Page 161
6.1 Introduction......Page 168
6.2.1 Protonation/deprotonation......Page 169
6.2.2 Acid-labile bonds......Page 172
6.3 Tumor pH probe......Page 174
6.4.1 Simultaneous activation by extracellular/subcellular pH by design......Page 175
6.4.2 Sequential activation by tumor extracellular/subcellular pH......Page 176
6.5.1 Drug delivery......Page 177
6.5.1.1 Small-molecule anticancer drug delivery......Page 178
6.5.1.2 Biomacromolecule delivery......Page 181
6.5.2 Tumor imaging......Page 183
References......Page 184
7.1 Introduction......Page 192
7.2.1 siRNA (short interfering RNA)......Page 193
7.2.3 microRNA......Page 196
7.2.3.2 Antagomirs......Page 197
7.2.4 Splice-switching oligonucleotides......Page 198
7.2.6 DNAzyme......Page 199
7.4.1 Oligonucleotides that stimulate the immune system......Page 200
7.4.2 Aptamers......Page 201
7.5.1 Carbohydrate modifications......Page 202
7.5.2 Backbone modification......Page 204
References......Page 205
8.1 Introduction......Page 214
8.2 Gene editing platform......Page 215
8.2.1 Zinc finger nuclease......Page 216
8.2.2 Transcription activator–like effector nuclease......Page 217
8.2.3 Clustered regularly interspaced short palindromic repeat–associated nuclease Cas9......Page 218
8.2.4 Others......Page 219
8.3.1 Delivery vectors......Page 220
8.3.2 Barriers for intracellular delivery......Page 221
8.4.1 Polymers......Page 222
8.4.1.1 Polyethylenimine......Page 226
8.4.1.2 Chitosan......Page 227
8.4.1.3 Polypeptide......Page 228
8.4.1.4 Fluorinated polymers......Page 230
8.4.1.5 Other polymers......Page 231
8.4.2.1 Lipid nanoparticles......Page 233
8.4.2.2 Lipid nanoshells......Page 234
8.4.2.3 Ligand-modified lipid nanoparticles......Page 235
8.4.3 Peptides......Page 236
8.4.3.1 Cell-penetrating peptides for delivery of nucleases......Page 237
8.4.3.2 Modification with peptides for specific purposes......Page 238
8.4.4 Inorganic materials......Page 239
8.4.5 Nucleic acid–based nanostructures......Page 240
8.5 Clinical trials......Page 242
8.6 Challenges and future perspectives......Page 247
References......Page 249
9.1 Introduction......Page 260
9.2.1.1 Antibody-based targeting of circulating tumor cells......Page 262
9.2.1.2 Size-based isolation of circulating tumor cells......Page 263
9.2.2.1 Cell-free DNA......Page 264
9.2.2.4 Detecting epigenetic modifications......Page 265
9.3 Technologies for liquid biopsies based on genetic and epigenetic mutations......Page 266
9.4 Exosomes......Page 267
9.6 Classic methods of cytokine detection in biospecimens......Page 269
9.6.2 Radioimmunoassays......Page 270
9.6.5 Multiparametric flow cytometry in conjunction with using (magnetic) beads......Page 271
9.6.6 Enzyme-linked immunospots (ELISPOT and FLUOROSPOT)......Page 272
9.6.8 Cytokine detection by means of surface-enhanced Raman spectroscopy......Page 273
9.7.1 Protease activity and cancer......Page 274
9.8 Outlook: cost-effectiveness will be an important factor......Page 276
References......Page 277
10.1 Introduction......Page 288
10.1.1 Biosensing and screening of biomarkers......Page 289
10.2 Nanotechnology for cancer diagnosis......Page 290
10.2.1 Properties and advantages of nanoparticles and nanomaterials......Page 291
10.3 Nanotechnology-based biosensing platforms......Page 292
10.3.2 Sphere-based platforms......Page 293
10.4.1 Screening—enhancing biomarkers detection......Page 294
10.4.2 Detecting circulating tumor cells......Page 295
10.5 Nanotechnology for cancer imaging......Page 296
10.5.1 Targeted molecular imaging......Page 297
10.5.3.2 Nanomaterials as enhancing contrast agents for magnetic resonance imaging......Page 298
10.5.4 Nano-based multimodal imaging......Page 299
10.5.7 Concerns with using nanomaterials in imaging......Page 300
10.6 Conclusion and future trends......Page 301
References......Page 302
11.1 Current state of tumor imaging in the clinic......Page 318
11.1.1 Positron emission tomography......Page 319
11.1.2 Magnetic resonance imaging......Page 320
11.1.3 X-ray computed tomography......Page 322
11.2 Potential clinical uses of novel biomaterials for tumor imaging......Page 326
11.3.1 Quantum dots......Page 327
11.3.1.1 Applications in cancer imaging......Page 328
11.3.1.2 Lymph node mapping......Page 329
11.3.1.3 Quantum dots for multimodal cancer imaging......Page 330
11.3.1.4 Safety concerns of quantum dots......Page 331
11.3.2 Carbon-based materials......Page 333
11.3.3 Lipid-based materials......Page 336
11.3.4 Polymer-based materials......Page 338
11.4 Risk–benefit assessment and perspectives......Page 343
References......Page 344
12.1 Assessment of target engagement in drug delivery......Page 358
12.2.1 Enhanced permeability and retention effect......Page 359
12.2.3 Förster resonance energy transfer to quantify target engagement......Page 360
12.3.1 Positron emission tomography versus optical imaging......Page 361
12.3.2 Visible and near-infrared fluorescence lifetime imaging......Page 362
12.3.3 Preclinical applications of fluorescence lifetime imaging Förster resonance energy transfer imaging......Page 363
12.4.1 Transferrin–transferrin receptor-mediated drug delivery......Page 366
12.4.2 Wide-field time-resolved macroscopy fluorescence lifetime imaging optical imager......Page 367
12.4.3 MFLI Förster resonance energy transfer imaging of transferrin–transferrin receptor binding......Page 369
12.4.4 Advantages and limitations of MFLI Förster resonance energy transfer imaging......Page 372
12.5 Imaging with high-resolution beyond the microscopy limit: mesoscopic fluorescence molecular tomography of thick tissues......Page 373
12.6 Future directions of MFLI Förster resonance energy transfer imaging in the clinic......Page 374
References......Page 376
Further reading......Page 390
13.1.1 Models of cancer origin......Page 392
13.1.2 Characteristics of cancer stem cells......Page 393
13.1.4 Cancer stem cell drug resistance......Page 394
13.2 Pharmacological strategies for suppressing cancer stem cells......Page 395
13.2.1.2 Inhibitors of the Notch pathway......Page 396
13.2.1.3 Inhibitors of Wnt/β-catenin......Page 397
13.2.1.5 Inhibitors of phosphatidylinositol 3-kinase/Akt/mTOR pathway......Page 398
13.2.2 Gene therapies for cancer stem cells......Page 399
13.3.1 Delivery of small drugs to cancer stem cells......Page 400
13.3.1.1 Polymer nanoparticles and micelles......Page 401
13.3.1.2 Liposomes......Page 403
13.3.2 Gene delivery to cancer stem cells......Page 404
13.3.2.1 Polymeric systems......Page 405
13.3.2.2 Lipid systems......Page 406
13.3.3 Targeting to cancer stem cells......Page 407
13.4 Concluding remarks......Page 408
Acknowledgments......Page 409
References......Page 410
14.1 Introduction......Page 426
14.2 A brief history of two- and three-dimensional in vitro cancer models......Page 429
14.3 Methods used for high-throughput testing of potential chemotherapeutics in vitro......Page 431
14.4.2 Gel-like substances/scaffold structures (hydrogels)......Page 434
14.4.3 The hanging drop format......Page 437
14.4.5 Magnetic levitation......Page 438
14.4.7 Microencapsulation......Page 439
14.4.9 Bioprinting......Page 440
14.5 The future of three-dimensional cancer models......Page 442
References......Page 443
15.2 Complexities of cancers and the tumor microenvironment......Page 450
15.3 Design and development of tumor models......Page 453
15.3.1 Spheroids and organoids......Page 454
15.3.2 Animal models......Page 455
15.3.3 Microfluidic models......Page 456
15.4 Challenges and opportunities......Page 462
References......Page 463
16.1 What is mechanotransduction?......Page 472
16.2 Native mechanobiology through cancer’s progression......Page 474
16.2.1 The primary tumor microenvironment......Page 475
16.2.2 The premetastatic niche and primary cell motility......Page 478
16.2.3 Secondary tumor sites: dormancy, reactivation, and drug resistance......Page 480
16.3 Researching mechanotransduction......Page 481
16.3.1.2 Optical tweezers......Page 482
16.3.1.4 Traction force microscopy......Page 484
16.3.1.6 Fluorescence staining......Page 485
16.3.2.2 Micro/nanopillars......Page 486
16.3.2.3 Substrate stiffness......Page 488
16.3.2.5 Microfluidics......Page 489
16.3.3 Material selection......Page 490
16.4 Conclusion and future trends......Page 493
References......Page 494
17.2.1 General mechanisms of immunostimulation: antigen-presenting cells and Toll-like receptors......Page 498
17.2.2 Cellular mediators of immune dysregulation within the tumor microenvironment......Page 502
17.3.1 Sustained delivery of immunomodulators......Page 503
17.4 Enhancing immunostimulation via nanobiomaterials......Page 504
17.4.1 Designing nanoscale biomaterials for cellular targeting......Page 505
17.4.2 Biodistributions of administered nanobiomaterials......Page 508
17.4.3 Antigen-presenting cells as key targets of therapeutic immunostimulation......Page 510
17.4.4 Nanobiomaterials for RNA interfering-based cancer therapy......Page 514
17.4.5 Nanobiomaterials to enhance cancer vaccination......Page 515
17.4.6 Nanobiomaterials to enhance adoptive T-cell therapy......Page 516
References......Page 517
18.1.1.1 Tumor-targeting antibodies......Page 526
18.1.1.2 Immunostimulatory antibodies......Page 527
18.1.2 Delivery of immunomodulators......Page 528
18.1.2.2 Cytokines......Page 529
18.1.2.3 Agonists of pattern recognition receptors......Page 530
18.1.3.1 Engineered protein scaffolds......Page 531
18.2.1 Artificial antigen-presenting cells......Page 532
18.2.1.1 Spherical artificial antigen-presenting cells......Page 533
18.2.2 Artificial T cells......Page 534
18.3.1.1 Tumor-infiltrating lymphocytes......Page 535
18.3.1.3 Chimeric antigen receptor T cells......Page 536
18.3.2 Natural killer cells......Page 537
18.3.3 Macrophages......Page 538
18.4.1 Small interfering RNA......Page 539
18.4.2.1 Messenger RNA use in dendritic cells......Page 540
18.4.2.2 Messenger RNA use in T cells......Page 541
References......Page 542
19.1 Introduction......Page 554
19.2.1 The role of lymphatic vessels and lymph node in vaccination......Page 555
19.2.2 Lymphatic system in cancer conditions......Page 556
19.3.1 Direct intranodal injection......Page 557
19.3.2 Passive draining of nanoparticulate vaccines from the interstitial space......Page 558
19.3.4 Albumin “hitchhiking” approach......Page 561
19.4 The dilemma between lymph node targeting and uptake and retention in antigen-presenting cells......Page 562
19.5.1 Polymeric micelles......Page 564
19.5.2 Lipid-coated inorganic nanoparticles......Page 565
19.5.3 Polymeric nanoparticles......Page 566
19.6 Summary, prospection, and conclusion......Page 567
References......Page 569
20.1 Introduction......Page 576
20.2.1 Conventional cancer vaccines: past and present......Page 577
20.2.2 Limitations and challenges of conventional cancer vaccines......Page 578
20.3 Immunogenic clearance......Page 579
20.3.2 Enhancing tumor cell phagocytosis by innate immune cells......Page 581
20.3.4 Biomaterials for immunogenic clearance......Page 585
20.4 Enhancing the response rate of immune checkpoint blockades to tumors......Page 586
20.5 Conclusion......Page 587
References......Page 588
21.1 Introduction......Page 596
21.2.1 Tumor heterogeneity and complexity......Page 597
21.2.2 Multidrug resistance......Page 598
21.2.3 Biological barriers......Page 599
21.2.4 Physiological barriers......Page 601
21.3.1 Drug encapsulation and stability......Page 602
21.3.2 Tumor-specific delivery and targeting......Page 603
21.3.3 Pharmacokinetic modulation......Page 605
21.3.4 Intracellular and subcellular delivery......Page 607
21.4 Safety challenges with nano-drug delivery......Page 608
21.4.1 Material safety issues......Page 609
21.4.2 Limitations of characterization tools and biological models......Page 610
21.4.3 Immunological profiling and immunotoxicity......Page 612
21.5 Formulation challenges with nano-drug delivery......Page 613
21.5.1 Nanoparticle design......Page 615
21.5.2 Analytical characterization......Page 616
21.5.3 Manufacturing and scale-up issues......Page 617
21.6.1 Lipid nanoparticles......Page 618
21.6.2 Polymeric nanoparticles......Page 619
21.6.3 Protein nanoparticles......Page 620
21.7 Conclusion and future perspective......Page 621
References......Page 623
22.1 “Executive” overview......Page 626
22.2.1 So, you want to develop a clinically effective formulation?......Page 629
22.2.2 My motivation and goal......Page 630
22.3 It is actually not that difficult to get drugs approved (there are lots of them)......Page 632
22.4 What about cancer statistics and cancer trials?......Page 633
22.5 This regulated process costs money to cross “the valley of death”......Page 635
22.5.1 So what does a clinical trial cost?......Page 636
22.5.2 What about R&D?......Page 637
22.6.2 Treatment of osteosarcoma has not improved in over 30 years......Page 638
22.7 And there are people who want to make money and are making money (which is fine)......Page 639
22.7.1 Doxil......Page 640
22.7.2 Abraxane......Page 642
22.7.3 So, are they making money? And who benefits?......Page 646
22.8 For cancer though, yes, it is difficult (but I think it is not impossible)......Page 647
22.8.1 A brief biographical-scientific sketch......Page 648
22.9 The intravenous dosing problem for cancer: from here to there......Page 649
22.10 What is nanomedicine? And why?......Page 651
22.10.1 Because we can......Page 652
22.10.1.1 niclosamide-conjugated polypeptide nanoparticles, CP-NIC......Page 654
22.10.1.1.3 Equivalent efficacy for CP-NIC versus NIC dosing (4× more niclosamide in the CP-NIC yields a growth delay of on.........Page 655
22.10.1.2.2 ODDA-PTX human effective dose (1.6g of PTX/patient; 19g of albumin)......Page 656
22.10.1.2.5 %Loading by volume (104.5nm3 equivalent drug molecular volume per particle)......Page 657
22.10.2 Because we have to? some things to consider starting with the drugs themselves......Page 659
22.10.2.1 A suggestion: start with the drugs themselves......Page 660
22.10.2.2 Extreme hydrophobicity and low water solubility (Sw ∼2–40µM, LogP 4–7)......Page 661
22.10.3 Success-ratio between drug solubility and efficacy......Page 662
22.10.4 The drug-absorbing sink......Page 664
22.10.5 Laws theories and models......Page 666
22.11.1 It takes two: Mark Dewhirst was an expert in hyperthermia......Page 667
22.11.2 Doxil is not working......Page 668
22.11.2.1 In vitro live-cell imaging data......Page 669
22.11.2.3 What properties of the drug are responsible for this failure?......Page 672
22.11.2.4 Doxil was almost the perfect nanomedicine; except for using the wrong drug for that technology......Page 673
22.11.3 The low-temperature-sensitive liposome: invention and testing......Page 674
22.11.3.1 Lysolipid exchanges with a lipid bilayer membrane vesicle......Page 675
22.11.3.4 11/11 tumors completely regressed out to 60 days after a single injection and 1hour of heating......Page 678
22.11.3.5 This data have also been confirmed in other preclinical studies......Page 679
22.11.3.6 How to treat local tumors that can be warmed to 42°C: we did not need the enhanced permeability and retention!......Page 680
22.11.3.7 This successful mechanism is ultimately based on the drug’s physicochemical properties......Page 684
22.11.3.8 Its science, so follow the protocol......Page 685
22.11.3.9 Follow the protocol: A pig study in bladder cancer shows how effective ThermoDox can be......Page 687
22.11.4 A final word about the enhanced permeability and retention effect (because this drives the next invention)......Page 688
22.12 “Make the drug look like the cancer’s food”: our efforts to treat osteosarcoma......Page 690
22.12.1 Osteosarcoma: relatively few chemotherapeutic advances over the past 30 years......Page 693
22.12.2 No two tumors are the same, but they all have to eat......Page 694
22.12.3 Cancers have an altered lipid metabolic reprogramming......Page 695
22.12.4 Our drug of choice is niclosamide: repurposed for cancer......Page 696
22.12.5 Oral-niclosamide has low bioavailability that hampers its repurposing in cancer......Page 697
22.12.7 In vitro cell studies......Page 698
22.12.10 An endogenous-inspired formulation for niclosamide......Page 699
22.12.11 Summary of our work so far......Page 700
22.12.12 Nanoparticle-fabrication by a rapid solvent-exchange process......Page 701
22.12.13 Eight aspects (steps) of nanoprecipitation and drug bioavailability......Page 703
22.12.14 The niclosamide stearate prodrug therapeutic component design......Page 706
22.12.15 Nanoparticle data......Page 709
22.12.16.1 Niclosamide is a dirty drug (in a good way)......Page 711
22.12.16.2 Targeted drugs......Page 713
22.12.16.3 Niclosamide’s target could be the inner mitochondrial membrane rather than a protein......Page 715
22.12.16.4 The drugability of niclosamide: the secret is in its small size, polar surface area, pKa, LogP, and LogD......Page 717
22.12.16.5 How does niclosamide kill the cell, or make it kill itself?......Page 718
22.12.17 Bioluminescence and pulmonary metastasis assay......Page 719
22.12.18 In vivo tests in an osteosarcoma lung metastasis mouse model......Page 720
22.12.18.1 The Day-0-inoculatio Day-1 chase study also avoided the need for enhanced permeability and retention......Page 722
22.12.18.2 What about more established metastases? We do not know but plan to find out......Page 724
22.13 Final thoughts......Page 725
22.13.1 Here is where we are and where we have to go......Page 726
22.13.2.1 Non-or-limited profit......Page 728
22.13.2.2.1 Prostate and chest wall recurrence trials that were not completed but could have been......Page 729
22.13.2.2.2 Let us go for primary liver in China because there are 500,000 cases per year......Page 730
22.13.2.4 Start generic......Page 731
References......Page 732
Dedication......Page 750
Index......Page 752
Back Cover......Page 783




نظرات کاربران