دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [First edition.] نویسندگان: Syed Shams Yazdani (editor), Rakesh Bhatnagar (editor), Adlakha Nidhi (editor) سری: Emerging materials and technologies ISBN (شابک) : 9780367745554, 0367745585 ناشر: سال نشر: 2022 تعداد صفحات: [399] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Biomass for bioenergy and biomaterials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زیست توده برای انرژی زیستی و بیومواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Chemistry of Plant Biomass 1.1 Introduction 1.2 Classification of Plant-Derived Biomass 1.2.1 Woody Biomass 1.2.2 Herbaceous Biomass 1.3 Plant Cell Wall Composition and Architecture 1.3.1 Chemistry of Cellulose 1.3.2 Chemistry of Hemicellulose 1.3.2.1 Xylan 1.3.2.2 Mannan 1.3.2.3 Xylogalactan 1.3.2.4 Xyloglucan 1.3.3 Chemistry of Lignin 1.3.4 Chemistry of Starch 1.3.4.1 Amylose 1.3.4.2 Amylopectin 1.4 Other Low Molecular Weight Constituents 1.4.1 Extractives 1.4.2 Inorganic Constituents 1.4.3 Fluid Content 1.5 Conclusions References Chapter 2 Lignin to Platform Chemicals and Biomaterials: Chemical and Biological Perspectives 2.1 Introduction to Lignocellulosic Biomass 2.2 Lignin: Structure and Its Components 2.3 Valorization of Lignin: Chemical Perspective 2.3.1 Photocatalytic Degradation 2.3.2 Enzymatic Degradation of Lignin 2.3.2.1 Lignin-Degrading (LD) and Lignin-Modifying (LM) Enzymes 2.3.2.2 Lignin Peroxidase (EC 1.11.1.14) 2.3.2.3 Manganese-Dependent Peroxidase (EC 1.11.1.13) 2.3.2.4 Laccase (Lac, Benzenediol: Oxygen Oxidoreductases; EC 1.10.3.2) 2.3.2.5 Superoxide Dismutases 2.4 Lignin in Biological Agents 2.4.1 Drug Carrier 2.4.2 Microbicidal Agent 2.4.3 Theranostic Agent 2.5 Future Perspective References Chapter 3 LCA and TEA for Biomass Conversion Technology 3.1 Introduction 3.2 Techno Economic Analysis (TEA) 3.2.1 TEA Methodology 3.2.1.1 Technology Maturity 3.2.1.2 Goal and Scope 3.2.1.3 Inventory 3.2.1.4 Assumptions 3.2.2 Case Studies 3.2.3 Challenges and Research Gaps 3.3 Life Cycle Assessment 3.3.1 LCA: Methodology 3.3.1.1 Goal and Scope Definition 3.3.1.2 Life Cycle Inventory 3.3.1.3 Impact Assessment 3.3.1.4 Interpretation 3.3.2 Case Studies 3.3.3 Challenges and Research Gaps 3.4 Conclusions References Chapter 4 Biomass Pre-Treatment and Liquefaction 4.1 Introduction 4.2 Structure and Composition of LB 4.2.1 Cellulose 4.2.2 Hemicellulose 4.2.3 Lignin 4.3 Different Pre-Treatment Strategies 4.3.1 Physical Pre-Treatments 4.3.2 Biological Pre-Treatments 4.3.3 Chemical Pre-Treatments 4.3.3.1 Acid Pre-Treatment 4.3.3.2 Alkali Pre-Treatment 4.3.3.3 Organosolv Pre-Treatment 4.3.3.4 Ionic Liquid Pre-Treatment 4.3.4 Physicochemical Pre-Treatments 4.3.4.1 Steam Explosion 4.3.4.2 Liquid Hot Water Pre-Treatment 4.3.4.3 Ammonia Fibre Explosion 4.3.4.4 Microwave Irradiation 4.3.4.5 Ultrasound Irradiation 4.3.4.6 Wet Oxidation 4.4 Hydrothermal Liquefaction (HTL) 4.4.1 Properties of Sub- and Supercritical Water 4.4.2 Reaction Mechanism of HTL 4.4.2.1 Reaction Mechanism for Degradation of Carbohydrates 4.4.2.2 Reaction Mechanism for Degradation of Lignin 4.4.3 Effect of Operating Parameters on HTL of Biomass 4.4.3.1 Effect of Feedstock Type and Particle Size 4.4.3.2 Effect of Temperature 4.4.3.3 Effect of Heating Rate and Thermal Gradient 4.4.3.4 Effect of Residence Time 4.4.3.5 Effect of Biomass/Water Mass Ratio 4.4.3.6 Effect of Pressure 4.4.3.7 Effect of Catalyst 4.5 Overview of Industrial Applications of HTL 4.6 Challenges and Future Perspective 4.7 Conclusions References Chapter 5 Role of Systems Biology in Enhancing Efficiency of Biocatalysts 5.1 Introduction 5.2 Need for Systems Biology 5.3 Reconstruction of Genome-Scale Metabolic Model 5.3.1 KEGG 5.3.2 BioCyc 5.3.3 MetaCyc 5.3.4 ExPASy 5.3.5 UniProt 5.3.6 BRENDA 5.3.7 ModelSEED 5.3.8 BiGG 5.3.9 BioModels 5.4 Refinement of the Draft Metabolic Model 5.5 Different Optimization Criteria 5.6 Experimental Data Used for Model Reconstruction 5.7 Toolboxes Available for Metabolic Modelling and FBA 5.7.1 COBRA Toolbox 5.7.2 COBRApy 5.7.3 ScrumPy – Metabolic Modelling in Python 5.7.4 Sybil 5.7.5 Pathway Tools 5.7.6 ModelSEED 5.7.7 RAVEN 5.7.8 MERLIN 5.7.9 CoReCo 5.7.10 CarveMe 5.8 Methods of Analyses of GSMM for Metabolic Engineering 5.9 Pathway Prediction for Synthetic Biology Applications 5.10 Genetic Engineering Tools 5.11 Improving Tolerance to Inhibitors through Systems Biology Analyses 5.12 Enzyme Discovery 5.13 Future Directions for Systems Biology – Integrative Analyses References Chapter 6 Enzyme-Based Saccharicatfiion 6.1 Introduction 6.2 Advent of Cellulase Producers 6.2.1 Fungus – Workhorse for Industrial Production 6.2.2 Bacterial Cellulase Systems 6.2.2.1 Cell-Bound System – Cellulosome 6.2.2.2 Cell-Free Cellulase Enzymes 6.3 Molecular and Biochemical Approaches for Enhanced Cellulase and Hemicellulase Production 6.3.1 Modulation of Expression of Transcriptional Activators and Repressors 6.3.2 Combating Carbon Catabolite Repression 6.4 Other Factors Influencing Cellulase Production and Downstream Saccharification 6.4.1 Biochemical Factors – Effect of Carbon Sources 6.4.2 Impact of Different Nitrogen Sources 6.4.3 Influence of pH and Temperature 6.5 Enzyme-Based Saccharification at Laboratory and Industrial Scales 6.6 Enzyme Cocktails for Enhanced Saccharification 6.7 Applications of Cellulases 6.8 Case Studies – Industrial Success Stories in India 6.8.1 India Glycols Ltd 6.8.2 PRAJ Industries, Pune 6.8.3 DBT-IOCL, Faridabad References Chapter 7 Enhancement of Biomass for Deconstruction 7.1 Introduction 7.2 In planta Modification of Cellulose Structure 7.2.1 Biosynthesis of Cellulose 7.2.1.1 Enhancement of the SuSy Activity 7.2.1.2 Disrupting Native Cellulose Biosynthesis Pathway 7.2.1.3 Altering Crystallinity of Cell Wall 7.2.1.4 In planta Expression of Cellulose-Degrading Enzymes 7.3 In planta Modification of Xylan Structure 7.3.1 Structural Feature and Biosynthesis of Xylan 7.3.1.1 Modulating Xylan Synthetic Complexes 7.3.1.2 Altering Xylan Reducing End Sequence and Methyl Glucuronic Acid Level 7.3.1.3 Modifying Polysaccharide Acetyltransferase Expression 7.3.1.4 In planta Expression of Xylan Hydrolytic Enzymes 7.4 In planta Modification of Pectin Structure 7.4.1 Types of Pectin-Degrading Enzymes 7.4.2 Bioengineering of Pectin 7.5 In planta Modification of Mannan 7.5.1 Structural Features of Different Types of Mannan 7.5.2 Introduction to Mannan Biosynthesis 7.5.2.1 Mannan Acetylation in Plants 7.5.2.2 Mannan-Degrading Enzymes 7.6 In planta Modification of Lignin 7.6.1 Introduction to Lignin Biosynthesis 7.6.1.1 Reducing the Lignin Content 7.6.1.2 Fine-tuning the Lignin Monomer Composition 7.6.1.3 Disrupting Cross-Linkages between Lignin and Other Cell Wall Components 7.6.1.4 Addition of Labile Monolignols 7.6.1.5 Modifying Lignin Polymerisation 7.7 Conclusions References Chapter 8 Lignocellulosic Biorefineries – A Step towards a Carbon- Neutral Economy 8.1 Introduction 8.2 Lignocellulosic Biorefinery 8.2.1 Fractionation Technologies and Their Importance 8.2.2 Evaluation of Sustainable Technology for LBM Feedstock Biorefinery 8.2.2.1 Technology Efficiency 8.2.2.2 Technology Flexibility 8.2.2.3 Technology Maturity 8.2.2.4 Technology Profitability 8.2.2.5 Robustness 8.2.3 Expected Challenges in the Commercialization of LBM 8.3 Commodity Chemicals 8.3.1 Opportunities, Uses, Market, Technology, and Challenges 8.3.2 Lactic Acid 8.3.3 Succinic Acid 8.3.4 Diol Compounds 8.3.5 Levulinic Acid 8.3.6 2, 5-Furandicarboxylic Acid 8.3.7 Isoprene 8.3.8 Lignin-Derived Chemicals 8.4 Valorization of LBM into Gaseous and Liquid Fuels 8.4.1 Biogas 8.4.2 Synthesis Gas 8.4.3 Drop-in Fuels 8.5 Conclusions References Chapter 9 Targeted Strain Engineering to Produce Bioenergy 9.1 Introduction 9.2 Different Generations of Biofuels 9.2.1 First Generation 9.2.2 Second Generation 9.2.2.1 Resistance Engineered against Inhibitors 9.2.3 Third Generation 9.3 High-Energy Advanced Biofuels 9.3.1 Bioalcohols 9.3.1.1 n-Butanol 9.3.1.2 Isobutanol 9.3.2 Hydrocarbons 9.3.3 Metabolic Engineering for the Production of Alkanes/Alkenes References Chapter 10 Saccharide to Biodiesel 10.1 Introduction 10.2 Physicochemical Properties and Chemical Constitution of Saccharides 10.3 Source of Saccharides 10.4 Oleaginous Microbial Platform for Biodiesel Production 10.4.1 Oleaginous Microalgae 10.4.2 Oleaginous Yeast and Filamentous Fungi 10.4.3 Oleaginous Bacteria 10.4.4 Co-Cultivation of Microorganisms 10.5 Sugar Conversion into SCO 10.6 Lipid Extraction Methods 10.7 Transesterification 10.8 Purification of Biodiesel 10.9 Fatty Acid Profiles and Biodiesel Properties 10.10 Conclusions References Chapter 11 Second-Generation Biobutanol – Methods and Prospects 11.1 Introduction 11.2 Feedstocks and Their Composition 11.3 Conversion of Biomass to Biofuels/Biochemicals 11.4 Pretreatment Strategies 11.4.1 Physical Pretreatment Methods 11.4.1.1 Mechanical Pretreatment 11.4.1.2 Irradiation Pretreatment 11.4.2 Chemical Pretreatment Methods 11.4.2.1 Acid Pretreatment 11.4.2.2 Alkaline Pretreatment 11.4.2.3 Organic Solvent Pretreatment 11.4.3 Physicochemical Pretreatment Methods 11.4.3.1 Steam Explosion 11.4.3.2 Liquid Hot Water 11.4.3.3 Ammonia Fiber Explosion 11.4.4 Biological Pretreatment Methods 11.4.4.1 Microbes-Based Pretreatment 11.4.4.2 Enzyme-Based Pretreatment 11.5 Enzymatic Hydrolysis 11.5.1 Enzymes for Hydrolysis of Lignocellulosic Biomass 11.5.1.1 Cellulases 11.5.1.2 Xylanases 11.5.2 Factors Affecting Enzymatic Hydrolysis 11.5.2.1 Enzyme-Related Factors 11.5.2.2 Substrate-Related Factors 11.6 Bioethanol 11.6.1 Fermentative Microorganisms 11.6.2 Thermophilic Fermentative Microorganisms for Lignocellulosic Ethanol Production 11.6.3 Downstream Processing of Ethanol 11.6.3.1 Distillation 11.6.3.2 Alternative Recovery Techniques 11.6.3.3 Pervaporation 11.6.3.4 Gas Stripping 11.6.3.5 Vacuum Fermentation 11.6.3.6 Adsorption 11.6.3.7 Solvent Extraction 11.6.4 Improvements in Ethanol Production 11.6.5 Opportunities and Challenges 11.7 Biobutanol 11.7.1 ABE/IBE Fermentation—Role of Clostridia 11.7.2 Amelioration of Butanol Fermentation 11.7.3 Consolidated Bioprocessing 11.7.4 Downstream Processing of Butanol 11.7.4.1 Pervaporation 11.7.4.2 Hybrid Technologies 11.7.5 Opportunities and Challenges 11.8 Comparison of Fuel Characteristics of Gasoline and Bioalcohols 11.9 Conclusions References Chapter 12 Biological Production of Diols – Current Perspective 12.1 Introduction: Overview on the Importance and Production of Diols 12.2 Biological Production of Various Diols 12.2.1 1,3-Propanediol (1,3-PDO) 12.2.2 1,2-Propanediol (1,2-PDO) 12.2.3 2,3-Butanediol (2,3-BDO) 12.2.4 1,4-Butanediol (1,4-BDO) 12.2.5 2,4-Pentanediol 12.3 A Brief Outline on the Various Aspects and Applications of Diols 12.4 Production of 2,3-Butanediol from Lignocellulosic Biomass – A Brief 12.4.1 Feedstock Used for 2,3-BDO Production 12.4.2 Potential Microorganism 12.4.3 Fermentation Strategies 12.4.4 Effect of Substrate Concentration 12.4.5 Downstream Processing References Chapter 13 Market Analysis of Biomass for Biofuels and Biomaterials 13.1 Introduction 13.2 Commercially Available Biomass 13.2.1 Classification of Agricultural Biomass 13.3 Opportunities, Growth Drivers and Challenges in Biomass-Derived Products 13.3.1 Affordable and Clean Energy 13.3.2 Climate Action 13.3.3 Life Below Water 13.3.4 Good Health and Well-Being 13.4 Global Biomass Supply Analysis in the Energy and Fuels Segment 13.5 Market Analysis of Biomass-Based Fuel Production 13.6 Global Market Analysis of Biomaterials 13.6.1 Bio-based Polymers – Supply– Demand Analysis 13.6.2 Analysis of Biomass Consumption to Produce Biopolymers in 2019 13.7 Market and Industry Analysis of Bio-based Chemicals 13.7.1 Biorefinery 13.7.1.1 Syngas Platform 13.7.1.2 Biogas Platform 13.7.1.3 C6 and C6/C5 Sugar Platform 13.7.1.4 Selective Dehydration, Hydrogenation and Oxidation Processes 13.7.1.5 Organic Solutions Platform 13.7.1.6 Lignin-Based Platform 13.7.2 Bio-based Chemicals Industry 13.7.2.1 C1-Containing Compounds 13.7.2.2 C2-Containing Compounds 13.7.2.3 C3-Containing Compounds 13.7.2.4 Bio-based Propylene Glycol 13.7.2.5 C4-Containing Compounds 13.7.2.6 C5-Containing Compounds 13.7.2.7 C6-Containing Compounds 13.7.2.8 Others 13.8 Conclusions References Index