دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Ioannis Anastopoulos, Eder Claudio Lima, Lucas Meili, Dimitrios A Giannakoudakis سری: ISBN (شابک) : 0323919146, 9780323919142 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 456 [458] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 67 Mb
در صورت تبدیل فایل کتاب Biomass-Derived Materials for Environmental Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد مشتق شده از زیست توده برای کاربردهای زیست محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مواد مشتق شده از زیست توده برای کاربردهای زیست محیطی پوشش پیشرفته ای از مواد مبتنی بر زیستی را ارائه می دهد که می تواند برای رفع نگرانی جهانی در مورد تخلیه آلاینده ها در محیط استفاده شود. این کتاب به بررسی تولید، شناسایی و کاربرد مواد زیستی برای اصلاح میپردازد. این کتاب که به وضوح بر اساس نوع مواد سازماندهی شده است، شامل جزئیات مواد لیگنوسلولزی، خاک رس های طبیعی، مواد کربن دار، کامپوزیت ها و مواد پیشرفته از منشاء طبیعی است. خوانندگان یک بررسی میان رشته ای و عملی از این مواد و استفاده از آنها در اصلاح محیط پیدا خواهند کرد که برای دانشمندان محیط زیست، دانشمندان مواد، شیمیدانان محیط زیست و مهندسان محیط زیست به طور یکسان ارزشمند خواهد بود.
Biomass-Derived Materials for Environmental Applications presents state-of-the-art coverage of bio-based materials that can be applied to address the growing global concern of pollutant discharge in the environment. The book examines the production, characterization and application of bio-based materials for remediation. Organized clearly by type of material, the book includes details on lignocellulosic materials, natural clays, carbonaceous materials, composites and advanced materials from natural origins. Readers will find an interdisciplinary and practical examination of these materials and their use in environmental remediation that will be valuable to environmental scientists, materials scientists, environmental chemists, and environmental engineers alike.
Front cover Half title Full title Copyright Dedication Contents Contributors About the editors Preface Acknowledgments Chapter1 - (Radio)toxic metal ion adsorption by plant fibers 1.1 Introduction 1.2 Adsorbent preparation, experimental procedures, and data evaluation 1.3 Adsorption studies 1.3.1 Maximum adsorption capacities 1.3.2 Thermodynamic data 1.3.3 Kinetic data 1.4 Conclusions and perspectives References Chapter2 - The utilization of rubber (Hevea brasiliensis) seed shells as adsorbent for water pollution remediation 2.1 Introduction 2.2 Adsorbent preparation 2.3 Specific surface area of adsorbents 2.4 Adsorbent performance 2.5 Equilibrium isotherm and kinetics modeling 2.6 Thermodynamics modeling 2.7 Gaps in knowledge and areas for future work Conclusion Disclosure statement References Chapter3 - Application of biochar for the removal of methylene blue from aquatic environments 3.1 Biochar 3.2 Thermochemical process for converting biomass 3.3 Methods of activation 3.3.1 Physical activation 3.3.2 Chemical activation 3.4 Biochar composites 3.5 Methylene blue 3.6 Factors affecting the adsorption process 3.6.1 Adsorbent dosage 3.6.2 Initial dye concentration 3.6.3 Contact time 3.6.4 pH of the dye solution 3.6.5 Ionic strength of solution 3.6.6 Temperature 3.6.7 Equilibrium studies 3.6.8 Kinetics studies 3.6.9 Thermodynamic studies 3.7 Role of biochar surface properties on adsorption of dye 3.7.1 Structural and chemical changes after activation Conclusions References Chapter4 - Application of biochar for attenuating heavy metals in contaminated soil: potential implications and research gaps 4.1 Introduction 4.2 Heavy metals abatement/removal in soil 4.3 Biochar production techniques 4.3.1 Pyrolysis 4.3.1.1 Cellulose decomposition for biochar through pyrolysis method 4.3.1.2 Hemicellulose decomposition for biochar through pyrolysis method 4.3.1.3 Lignin decomposition for biochar through pyrolysis method 4.3.2 Hydrothermal carbonization 4.3.3 Gasification 4.3.3.1 Conditions for gasification 4.3.3.2 Limitation of gasification 4.3.3.3 Gasification steps 4.3.4 Torrefaction 4.3.4.1 Conditions for torrefaction 4.3.4.2 Limitation of torrefaction 4.4 Physical and chemical characteristics of biochar 4.5 Use of biochar for immobilization of heavy metals in contaminated soils 4.6 Factors affecting the immobilization efficiency of biochar 4.6.1 Feedstock source and pyrolysis temperature 4.6.2 pH 4.6.3 Organic matter 4.6.4 Application rate 4.6.5 Particle size 4.7 Mechanisms of biochar-assisted heavy metals immobilization in soils 4.7.1 Complexation 4.7.2 Precipitation 4.7.3 Electrostatic attraction 4.7.4 Ion-exchange 4.8 Engineered biochar for improving heavy metals immobilization 4.8.1 Physical modification techniques 4.8.1.1 Steam activation 4.8.1.2 Gas purging 4.8.1.3 Microwave pyrolysis 4.8.1.4 Ball milling 4.8.2 Magnetic modifications 4.8.3 Chemical modification 4.8.3.1 Hydrogen peroxide modification 4.8.3.2 Acid and alkali modification 4.8.3.3 Coating or impregnation via chemical modification 4.9 Research gaps, future directions, and conclusion References Chapter5 - Biomass-derived adsorbents for caffeine removal from aqueous medium 5.1 Introduction 5.1.1 Problem statement 5.1.2 Contamination of effluents by emerging contaminants 5.1.3 Effluents contaminated with caffeine 5.1.4 Ecotoxicity of caffeine 5.1.5 Methods for removing caffeine from effluents 5.1.6 Removal of caffeine by biosorptive processes 5.2 Synthesis, characterization, and application biomass-based adsorbents for caffeine removal 5.2.1 Biomass-derived materials synthesis and characterization 5.2.2 Caffeine removal by bioadsorptive processes in batch and dynamic systems 5.3 Critical and comparative analysis 5.3.1 Comparison of caffeine bioadsorption with other methods of removal/degradation 5.4 Future perspectives and final remarks Acknowledgments References Chapter 6 - Carbonaceous materials-a prospective strategy for eco-friendly decontamination of wastewater 6.1 Introduction 6.2 Biochar-based materials 6.2.1 Pristine biochar 6.2.2 Nature of biochar feedstock 6.2.2.1 Pyrolysis temperature 6.2.2.2 Pretreatment of feedstock 6.2.3 Activated biochar 6.2.3.1 Physical activation 6.2.3.2 Chemical activation 6.2.4 Biochar composites 6.2.4.1 Metal-based composites 6.2.4.2 Nonmetallic composites 6.3 Hydrochar-based materials 6.3.1 Pristine hydrochar 6.3.2 Modified hydrochars 6.4 Porous graphitic carbon-based materials 6.5 Future recommendations Conclusion References Chapter7 - Production of carbon-based adsorbents from lignocellulosic biomass 7.1 Lignocellulosic-basic materials as adsorbents 7.2 Hydrochars, biochars, activated carbons, coals 7.3 Activation of carbon material and analytical techniques to define an activated carbon 7.4 Surface area and pore size distribution curves 7.5 Misuse of SEM in adsorption studies 7.6 Functional groups, the hydrophobicity-hydrophilicity ratio of carbon-based adsorbents 7.7 Composites of pyrolyzed lignocellulosic materials and biochars Conclusion Acknowledgments References Chapter 8 - Lignin and lignin-derived products as adsorbent materials for wastewater treatment 8.1 Introduction 8.2 Various lignin-derived adsorbents 8.2.1 Native lignin-based adsorbents 8.2.2 Modified lignin adsorbents 8.2.3 Magnetized lignin adsorbents 8.2.4 Lignin-based composites 8.2.5 Lignin-based hydrogels 8.2.6 Lignin-based resins 8.2.7 Lignin-based beads 8.2.8 Lignin-based nanomaterials Conclusions References Chapter 9 - Utilization of mussel shell to remediate soils polluted with heavy metals 9.1 Introduction 9.2 Mussel shell characteristics 9.2.1 Basic data 9.2.2 Potential modifications on mussel shell to increase its pollutants removal capacity 9.3 Heavy metals adsorption/desorption on/from mussel shell 9.3.1 Characteristics of mussel shell as adsorbent surface 9.3.2 Main characteristics of heavy metals 9.3.3 Effects due to pH 9.3.3.1 Dissolution of CaCO3 9.3.3.2 Adsorbent surface 9.3.3.3 Species distribution for different heavy metals 9.3.4 Effects due to temperature 9.3.5 Competition for adsorption sites 9.3.6 Adsorption and desorption mechanisms 9.4 Soil remediation using mussel shells 9.4.1 Mine soils 9.4.2 Vineyard soils 9.5 Remarks and perspectives of future research References Chapter10 - Perspectives of the reuse of agricultural wastes from the Rio Grande do Sul, Brazil, as new adsorbent materials 10.1 Introduction 10.2 Contextualization of agriculture activity in the state of RS, Brazil 10.3 Composition of agricultural wastes 10.4 Production of bio-based adsorbents 10.4.1 Agricultural waste as adsorbent material 10.4.2 Production of biochar from agricultural wastes 10.5 Application of agricultural waste from RS in adsorption of different pollutants 10.5.1 Isotherm and kinetic studies 10.5.2 Thermodynamic studies 10.5.3 Adsorption interactions and mechanisms 10.5.4 Fixed-bed and simulated effluents studies 10.5.5 Desorption and reuse studies Conclusion References Chapter11 - Polyvalent metal ion adsorption by chemically modified biochar fibers 11.1 Introduction 11.2 Adsorption models and parameters 11.2.1 Isotherm models 11.2.2 Kinetic models 11.2.3 Thermodynamic parameters 11.3 Adsorption studies 11.3.1 U(VI) 11.3.2 Adsorption of Th(IV) 11.3.3 Adsorption of Sm(III) 11.3.4 Adsorption of Cu(II) 11.3.5 Comparison of the qmax values 11.4 Conclusions and perspectives References Chapter 12 - Leucaena leucocephala as biomass material for the removal of heavy metals and metalloids 12.1 Introduction 12.2 Materials derivatives from Leucaena leucocephala 12.2.1 Applications 12.2.2 Leucaena leucocephala (Ll) and their derived materials for the removal of heavy metals and metalloids 12.2.3 Experimental parameters for removal of heavy metals and metalloids by Leucaena leucocephala (Ll) and their derive ... 12.2.4 Biosorption kinetics of Leucaena leucocephala (Ll) and their derived materials 12.2.5 Adsorption isotherms of Leucaena leucocephala (Ll) and their derived materials 12.3 Critical and comparative discussion 12.3.1 Physicochemical features of Leucaena leucocephala and sorption capacity of heavy metals 12.3.2 Cost evaluation of the Leucaena leucocephala biosorbent 12.4 Conclusions 12.5 Challenges and future prospects References Chapter13 - Potential environmental applications of Helianthus annuus (sunflower) residue-based adsorbents for dye remo ... 13.1 Introduction 13.2 The effect of pH 13.3 Isotherm and kinetic modeling 13.4 Desorption studies 13.5 Thermodynamic studies 13.6 Conclusions and future work References Chapter14 - A review of pine-based adsorbents for the adsorption of dyes 14.1 Introduction 14.2 Adsorbent preparation from pine biomass 14.3 Specific surface area of pine adsorbents 14.4 Pine adsorbent performance for dye uptake 14.5 Equilibrium isotherm and kinetics modeling 14.6 Thermodynamics modeling 14.7 Other adsorption investigations 14.8 Interesting areas for future work Conclusion Disclosure statements References Chapter15 - Utilization of avocado (Persea americana) adsorbents for the elimination of pollutants from water: a review 15.1 Introduction 15.2 Adsorbent preparation from avocado biomass 15.3 Surface properties of avocado adsorbents 15.4 Performance of avocado adsorbents for pollutants uptake 15.5 Equilibrium isotherm and kinetics modeling 15.6 Thermodynamics modeling 15.7 Desorption, reusability, and column adsorption studies 15.8 Competitive adsorption and ionic strength effect 15.9 Knowledge gaps and future perspectives Conclusion Disclosure statements References Chapter16 - Agro-wastes as precursors of biochar, a cleaner adsorbent to remove pollutants from aqueous solutions 16.1 Introduction 16.2 Agricultural wastes as a precursor of biochar 16.2.1 Types of agro-industrial wastes 16.2.2 Agricultural wastes availability 16.2.3 Chemical components of agricultural wastes 16.2.4 Agricultural wastes utilization 16.3 Biochar production 16.3.1 Chemical activation of biochar 16.3.2 Physical activation of biochar 16.4 Biochar characterization 16.5 Pollutants removal by biochar and biochar-activated carbon 16.5.1 Heavy metals 16.5.2 Organic pollutants 16.5.2.1 Dye molecules 16.5.2.2 Pharmaceutical pollutants 16.5.3 Potential risk of biochar and biochar-activated carbon for water treatment 16.6 Environmental footprint of biochar production via life cycle assessment 16.7 Conclusions and future perspectives References Chapter17 - Biomass-derived renewable materials for sustainable chemical and environmental applications 17.1 Introduction 17.2 Biomass-derived materials 17.2.1 Properties of biomass-derived materials 17.2.2 Treatment temperature 17.2.3 Adsorption 17.2.4 Environmental applications of biomass-derived materials 17.2.4.1 Capture atmospheric CO2 17.2.4.2 Wastewater treatment 17.2.4.3 Biosorption of toxic heavy metals from aqueous mediums 17.2.4.4 Effluent treatment using porous carbon materials 17.2.4.5 Multifunctional aerogels for high adsorption 17.2.4.6 Activated carbon for adsorptive thermal devices 17.2.5 Enhanced automotive lubricants properties 17.2.6 Nanoadsorbents for dyes removal from aqueous effluents 17.2.7 Lignin-based polyurethanes, bio foams and epoxy resins 17.2.8 Light-weight bio-based carbon fiber materials 17.2.9 Valorization of biomass to liquid fuels 17.2.10 Bio-based smart materials for sensors 17.2.11 Nanomaterials for elimination of pharmaceutical micropollutants 17.2.12 Multifunctional biochar applications 17.2.12.1 Removal of organic pollutants 17.2.12.2 Improvement of soil quality 17.2.12.3 Pollutants removal from aqueous solution 17.2.12.4 Removal of heavy metals 17.2.12.5 Syngas renewable energy source 17.2.13 Biomass-derived bio-oil 17.2.13.1 Fuel for heavy-duty engines and boilers 17.2.13.2 Hydrodeoxygenation of bio-oil 17.2.13.3 Bio-oil to hydrogen 17.2.13.4 Bio-oil renewable biodiesel 17.2.14 High-value chemicals from bio-oil 17.2.14.1 Carbonaceous materials from bio-oil 17.2.14.2 Bio-oil in asphalt 17.2.15 Pesticides 17.2.16 Polyurethane foams formation 17.2.17 Solvent extraction 17.2.18 Electrodes Conclusion Acknowledgment References Chapter18 - Utilization of biomass-derived materials for sustainable environmental pollutants remediation 18.1 Introduction 18.2 Source of heavy metals in wastewater 18.2.1 Source of lead and existing concentration in wastewater 18.2.2 Source of mercury and existing concentration in wastewater 18.2.3 Source of nickel and existing concentration in wastewater 18.2.4 Source of cadmium and existing concentration in wastewater 18.2.5 Source of copper and existing concentration in wastewater 18.3 Biomass-derived adsorbent used for heavy metal removal 18.3.1 Corn waste-based adsorbent used for heavy metal removal 18.3.2 Grape waste-based adsorbent used for heavy metal removal 18.4 Adsorption kinetics 18.5 Adsorption isotherm 18.6 Adsorption thermodynamics 18.7 Gaps in knowledge and areas for future work Conclusion References Index Back cover