ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biomass-Derived Materials for Environmental Applications

دانلود کتاب مواد مشتق شده از زیست توده برای کاربردهای زیست محیطی

Biomass-Derived Materials for Environmental Applications

مشخصات کتاب

Biomass-Derived Materials for Environmental Applications

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 0323919146, 9780323919142 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 456
[458] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 67 Mb 

قیمت کتاب (تومان) : 30,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Biomass-Derived Materials for Environmental Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد مشتق شده از زیست توده برای کاربردهای زیست محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد مشتق شده از زیست توده برای کاربردهای زیست محیطی

مواد مشتق شده از زیست توده برای کاربردهای زیست محیطی پوشش پیشرفته ای از مواد مبتنی بر زیستی را ارائه می دهد که می تواند برای رفع نگرانی جهانی در مورد تخلیه آلاینده ها در محیط استفاده شود. این کتاب به بررسی تولید، شناسایی و کاربرد مواد زیستی برای اصلاح می‌پردازد. این کتاب که به وضوح بر اساس نوع مواد سازماندهی شده است، شامل جزئیات مواد لیگنوسلولزی، خاک رس های طبیعی، مواد کربن دار، کامپوزیت ها و مواد پیشرفته از منشاء طبیعی است. خوانندگان یک بررسی میان رشته ای و عملی از این مواد و استفاده از آنها در اصلاح محیط پیدا خواهند کرد که برای دانشمندان محیط زیست، دانشمندان مواد، شیمیدانان محیط زیست و مهندسان محیط زیست به طور یکسان ارزشمند خواهد بود.


توضیحاتی درمورد کتاب به خارجی

Biomass-Derived Materials for Environmental Applications presents state-of-the-art coverage of bio-based materials that can be applied to address the growing global concern of pollutant discharge in the environment. The book examines the production, characterization and application of bio-based materials for remediation. Organized clearly by type of material, the book includes details on lignocellulosic materials, natural clays, carbonaceous materials, composites and advanced materials from natural origins. Readers will find an interdisciplinary and practical examination of these materials and their use in environmental remediation that will be valuable to environmental scientists, materials scientists, environmental chemists, and environmental engineers alike.



فهرست مطالب

Front cover
	Half title
	Full title
	Copyright
	Dedication
Contents
Contributors
About the editors
Preface
Acknowledgments
Chapter1 - (Radio)toxic metal ion adsorption by plant fibers
	1.1 Introduction
	1.2 Adsorbent preparation, experimental procedures, and data evaluation
	1.3 Adsorption studies
		1.3.1 Maximum adsorption capacities
		1.3.2 Thermodynamic data
		1.3.3 Kinetic data
	1.4 Conclusions and perspectives
	References
Chapter2 - The utilization of rubber (Hevea brasiliensis) seed shells as adsorbent for water pollution remediation
	2.1 Introduction
	2.2 Adsorbent preparation
	2.3 Specific surface area of adsorbents
	2.4 Adsorbent performance
	2.5 Equilibrium isotherm and kinetics modeling
	2.6 Thermodynamics modeling
	2.7 Gaps in knowledge and areas for future work
	Conclusion
	Disclosure statement
	References
Chapter3 - Application of biochar for the removal of methylene blue from aquatic environments
	3.1 Biochar
	3.2 Thermochemical process for converting biomass
	3.3 Methods of activation
		3.3.1 Physical activation
		3.3.2 Chemical activation
	3.4 Biochar composites
	3.5 Methylene blue
	3.6 Factors affecting the adsorption process
		3.6.1 Adsorbent dosage
		3.6.2 Initial dye concentration
		3.6.3 Contact time
		3.6.4 pH of the dye solution
		3.6.5 Ionic strength of solution
		3.6.6 Temperature
		3.6.7 Equilibrium studies
		3.6.8 Kinetics studies
		3.6.9 Thermodynamic studies
	3.7 Role of biochar surface properties on adsorption of dye
		3.7.1 Structural and chemical changes after activation
	Conclusions
	References
Chapter4 - Application of biochar for attenuating heavy metals in contaminated soil: potential implications and research gaps
	4.1 Introduction
	4.2 Heavy metals abatement/removal in soil
	4.3 Biochar production techniques
		4.3.1 Pyrolysis
			4.3.1.1 Cellulose decomposition for biochar through pyrolysis method
			4.3.1.2 Hemicellulose decomposition for biochar through pyrolysis method
			4.3.1.3 Lignin decomposition for biochar through pyrolysis method
		4.3.2 Hydrothermal carbonization
		4.3.3 Gasification
			4.3.3.1 Conditions for gasification
			4.3.3.2 Limitation of gasification
			4.3.3.3 Gasification steps
		4.3.4 Torrefaction
			4.3.4.1 Conditions for torrefaction
			4.3.4.2 Limitation of torrefaction
	4.4 Physical and chemical characteristics of biochar
	4.5 Use of biochar for immobilization of heavy metals in contaminated soils
	4.6 Factors affecting the immobilization efficiency of biochar
		4.6.1 Feedstock source and pyrolysis temperature
		4.6.2 pH
		4.6.3 Organic matter
		4.6.4 Application rate
		4.6.5 Particle size
	4.7 Mechanisms of biochar-assisted heavy metals immobilization in soils
		4.7.1 Complexation
		4.7.2 Precipitation
		4.7.3 Electrostatic attraction
		4.7.4 Ion-exchange
	4.8 Engineered biochar for improving heavy metals immobilization
		4.8.1 Physical modification techniques
			4.8.1.1 Steam activation
			4.8.1.2 Gas purging
			4.8.1.3 Microwave pyrolysis
			4.8.1.4 Ball milling
		4.8.2 Magnetic modifications
		4.8.3 Chemical modification
			4.8.3.1 Hydrogen peroxide modification
			4.8.3.2 Acid and alkali modification
			4.8.3.3 Coating or impregnation via chemical modification
	4.9 Research gaps, future directions, and conclusion
	References
Chapter5 - Biomass-derived adsorbents for caffeine removal from aqueous medium
	5.1 Introduction
		5.1.1 Problem statement
		5.1.2 Contamination of effluents by emerging contaminants
		5.1.3 Effluents contaminated with caffeine
		5.1.4 Ecotoxicity of caffeine
		5.1.5 Methods for removing caffeine from effluents
		5.1.6 Removal of caffeine by biosorptive processes
	5.2 Synthesis, characterization, and application biomass-based adsorbents for caffeine removal
		5.2.1 Biomass-derived materials synthesis and characterization
		5.2.2 Caffeine removal by bioadsorptive processes in batch and dynamic systems
	5.3 Critical and comparative analysis
		5.3.1 Comparison of caffeine bioadsorption with other methods of removal/degradation
	5.4 Future perspectives and final remarks
	Acknowledgments
	References
Chapter 6 - Carbonaceous materials-a prospective strategy for eco-friendly decontamination of wastewater
	6.1 Introduction
	6.2 Biochar-based materials
		6.2.1 Pristine biochar
		6.2.2 Nature of biochar feedstock
			6.2.2.1 Pyrolysis temperature
			6.2.2.2 Pretreatment of feedstock
		6.2.3 Activated biochar
			6.2.3.1 Physical activation
			6.2.3.2 Chemical activation
		6.2.4 Biochar composites
			6.2.4.1 Metal-based composites
			6.2.4.2 Nonmetallic composites
	6.3 Hydrochar-based materials
		6.3.1 Pristine hydrochar
		6.3.2 Modified hydrochars
	6.4 Porous graphitic carbon-based materials
	6.5 Future recommendations
	Conclusion
	References
Chapter7 - Production of carbon-based adsorbents from lignocellulosic biomass
	7.1 Lignocellulosic-basic materials as adsorbents
	7.2 Hydrochars, biochars, activated carbons, coals
	7.3 Activation of carbon material and analytical techniques to define an activated carbon
	7.4 Surface area and pore size distribution curves
	7.5 Misuse of SEM in adsorption studies
	7.6 Functional groups, the hydrophobicity-hydrophilicity ratio of carbon-based adsorbents
	7.7 Composites of pyrolyzed lignocellulosic materials and biochars
	Conclusion
	Acknowledgments
	References
Chapter 8 - Lignin and lignin-derived products as adsorbent materials for wastewater treatment
	8.1 Introduction
	8.2 Various lignin-derived adsorbents
		8.2.1 Native lignin-based adsorbents
		8.2.2 Modified lignin adsorbents
		8.2.3 Magnetized lignin adsorbents
		8.2.4 Lignin-based composites
		8.2.5 Lignin-based hydrogels
		8.2.6 Lignin-based resins
		8.2.7 Lignin-based beads
		8.2.8 Lignin-based nanomaterials
	Conclusions
	References
Chapter 9 - Utilization of mussel shell to remediate soils polluted with heavy metals
	9.1 Introduction
	9.2 Mussel shell characteristics
		9.2.1 Basic data
		9.2.2 Potential modifications on mussel shell to increase its pollutants removal capacity
	9.3 Heavy metals adsorption/desorption on/from mussel shell
		9.3.1 Characteristics of mussel shell as adsorbent surface
		9.3.2 Main characteristics of heavy metals
		9.3.3 Effects due to pH
			9.3.3.1 Dissolution of CaCO3
			9.3.3.2 Adsorbent surface
			9.3.3.3 Species distribution for different heavy metals
		9.3.4 Effects due to temperature
		9.3.5 Competition for adsorption sites
		9.3.6 Adsorption and desorption mechanisms
	9.4 Soil remediation using mussel shells
		9.4.1 Mine soils
		9.4.2 Vineyard soils
	9.5 Remarks and perspectives of future research
	References
Chapter10 - Perspectives of the reuse of agricultural wastes from the Rio Grande do Sul, Brazil, as new adsorbent materials
	10.1 Introduction
	10.2 Contextualization of agriculture activity in the state of RS, Brazil
	10.3 Composition of agricultural wastes
	10.4 Production of bio-based adsorbents
		10.4.1 Agricultural waste as adsorbent material
		10.4.2 Production of biochar from agricultural wastes
	10.5 Application of agricultural waste from RS in adsorption of different pollutants
		10.5.1 Isotherm and kinetic studies
		10.5.2 Thermodynamic studies
		10.5.3 Adsorption interactions and mechanisms
		10.5.4 Fixed-bed and simulated effluents studies
		10.5.5 Desorption and reuse studies
	Conclusion
	References
Chapter11 - Polyvalent metal ion adsorption by chemically modified biochar fibers
	11.1 Introduction
	11.2 Adsorption models and parameters
		11.2.1 Isotherm models
		11.2.2 Kinetic models
		11.2.3 Thermodynamic parameters
	11.3 Adsorption studies
		11.3.1 U(VI)
		11.3.2 Adsorption of Th(IV)
		11.3.3 Adsorption of Sm(III)
		11.3.4 Adsorption of Cu(II)
		11.3.5 Comparison of the qmax values
	11.4 Conclusions and perspectives
	References
Chapter 12 - Leucaena leucocephala as biomass material for the removal of heavy metals and metalloids
	12.1 Introduction
	12.2 Materials derivatives from Leucaena leucocephala
		12.2.1 Applications
		12.2.2 Leucaena leucocephala (Ll) and their derived materials for the removal of heavy metals and metalloids
		12.2.3 Experimental parameters for removal of heavy metals and metalloids by Leucaena leucocephala (Ll) and their derive ...
		12.2.4 Biosorption kinetics of Leucaena leucocephala (Ll) and their derived materials
		12.2.5 Adsorption isotherms of Leucaena leucocephala (Ll) and their derived materials
	12.3 Critical and comparative discussion
		12.3.1 Physicochemical features of Leucaena leucocephala and sorption capacity of heavy metals
		12.3.2 Cost evaluation of the Leucaena leucocephala biosorbent
	12.4 Conclusions
	12.5 Challenges and future prospects
	References
Chapter13 - Potential environmental applications of Helianthus annuus (sunflower) residue-based adsorbents for dye remo ...
	13.1 Introduction
	13.2 The effect of pH
	13.3 Isotherm and kinetic modeling
	13.4 Desorption studies
	13.5 Thermodynamic studies
	13.6 Conclusions and future work
	References
Chapter14 - A review of pine-based adsorbents for the adsorption of dyes
	14.1 Introduction
	14.2 Adsorbent preparation from pine biomass
	14.3 Specific surface area of pine adsorbents
	14.4 Pine adsorbent performance for dye uptake
	14.5 Equilibrium isotherm and kinetics modeling
	14.6 Thermodynamics modeling
	14.7 Other adsorption investigations
	14.8 Interesting areas for future work
	Conclusion
	Disclosure statements
	References
Chapter15 - Utilization of avocado (Persea americana) adsorbents for the elimination of pollutants from water: a review
	15.1 Introduction
	15.2 Adsorbent preparation from avocado biomass
	15.3 Surface properties of avocado adsorbents
	15.4 Performance of avocado adsorbents for pollutants uptake
	15.5 Equilibrium isotherm and kinetics modeling
	15.6 Thermodynamics modeling
	15.7 Desorption, reusability, and column adsorption studies
	15.8 Competitive adsorption and ionic strength effect
	15.9 Knowledge gaps and future perspectives
	Conclusion
	Disclosure statements
	References
Chapter16 - Agro-wastes as precursors of biochar, a cleaner adsorbent to remove pollutants from aqueous solutions
	16.1 Introduction
	16.2 Agricultural wastes as a precursor of biochar
		16.2.1 Types of agro-industrial wastes
		16.2.2 Agricultural wastes availability
		16.2.3 Chemical components of agricultural wastes
		16.2.4 Agricultural wastes utilization
	16.3 Biochar production
		16.3.1 Chemical activation of biochar
		16.3.2 Physical activation of biochar
	16.4 Biochar characterization
	16.5 Pollutants removal by biochar and biochar-activated carbon
		16.5.1 Heavy metals
		16.5.2 Organic pollutants
			16.5.2.1 Dye molecules
			16.5.2.2 Pharmaceutical pollutants
		16.5.3 Potential risk of biochar and biochar-activated carbon for water treatment
	16.6 Environmental footprint of biochar production via life cycle assessment
	16.7 Conclusions and future perspectives
	References
Chapter17 - Biomass-derived renewable materials for sustainable chemical and environmental applications
	17.1 Introduction
	17.2 Biomass-derived materials
		17.2.1 Properties of biomass-derived materials
		17.2.2 Treatment temperature
		17.2.3 Adsorption
		17.2.4 Environmental applications of biomass-derived materials
			17.2.4.1 Capture atmospheric CO2
			17.2.4.2 Wastewater treatment
			17.2.4.3 Biosorption of toxic heavy metals from aqueous mediums
			17.2.4.4 Effluent treatment using porous carbon materials
			17.2.4.5 Multifunctional aerogels for high adsorption
			17.2.4.6 Activated carbon for adsorptive thermal devices
		17.2.5 Enhanced automotive lubricants properties
		17.2.6 Nanoadsorbents for dyes removal from aqueous effluents
		17.2.7 Lignin-based polyurethanes, bio foams and epoxy resins
		17.2.8 Light-weight bio-based carbon fiber materials
		17.2.9 Valorization of biomass to liquid fuels
		17.2.10 Bio-based smart materials for sensors
		17.2.11 Nanomaterials for elimination of pharmaceutical micropollutants
		17.2.12 Multifunctional biochar applications
			17.2.12.1 Removal of organic pollutants
			17.2.12.2 Improvement of soil quality
			17.2.12.3 Pollutants removal from aqueous solution
			17.2.12.4 Removal of heavy metals
			17.2.12.5 Syngas renewable energy source
		17.2.13 Biomass-derived bio-oil
			17.2.13.1 Fuel for heavy-duty engines and boilers
			17.2.13.2 Hydrodeoxygenation of bio-oil
			17.2.13.3 Bio-oil to hydrogen
			17.2.13.4 Bio-oil renewable biodiesel
		17.2.14 High-value chemicals from bio-oil
			17.2.14.1 Carbonaceous materials from bio-oil
			17.2.14.2 Bio-oil in asphalt
		17.2.15 Pesticides
		17.2.16 Polyurethane foams formation
		17.2.17 Solvent extraction
		17.2.18 Electrodes
	Conclusion
	Acknowledgment
	References
Chapter18 - Utilization of biomass-derived materials for sustainable environmental pollutants remediation
	18.1 Introduction
	18.2 Source of heavy metals in wastewater
		18.2.1 Source of lead and existing concentration in wastewater
		18.2.2 Source of mercury and existing concentration in wastewater
		18.2.3 Source of nickel and existing concentration in wastewater
		18.2.4 Source of cadmium and existing concentration in wastewater
		18.2.5 Source of copper and existing concentration in wastewater
	18.3 Biomass-derived adsorbent used for heavy metal removal
		18.3.1 Corn waste-based adsorbent used for heavy metal removal
		18.3.2 Grape waste-based adsorbent used for heavy metal removal
	18.4 Adsorption kinetics
	18.5 Adsorption isotherm
	18.6 Adsorption thermodynamics
	18.7 Gaps in knowledge and areas for future work
	Conclusion
	References
Index
	Back cover




نظرات کاربران