دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: Pandikumar A., Rameshkumar P., Veerakumar P. سری: ISBN (شابک) : 9783527349265 ناشر: Wiley-VCH سال نشر: 2023 تعداد صفحات: 344 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Biomass-Derived Carbon Materials: Production and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد کربن مشتق شده از زیست توده: تولید و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تولید پایدار مواد کربنی و کاربردهای آنها را بررسی می کند مواد کربن مشتق شده از زیست توده که مورد توجه روزافزون متخصصان و محققان در زمینه های مختلف است، می توانند به راحتی تولید شوند و دارای سطح وسیع و تخلخل هایی باشند که کاربردهای زیادی را در علم مواد، بیوشیمی، شیمی و تحقیقات انرژی ممکن می سازد. در کتاب مواد کربن مشتق شده از زیست توده: تولید و کاربردها، تیمی از محققین موفق، اکتشاف کامل و به روزی را در مورد فرآیندهای آماده سازی و فعال سازی مواد کربنی مشتق شده از زیست توده، ساخت کامپوزیت ها، و کاربردهای متنوع و چند رشته ای ارائه می کنند. تکنولوژی. این کتاب همچنین فرصت های آینده برای تحقیق و کاربرد را پوشش می دهد. فصلهای مقدماتی اطلاعاتی در مورد تولید، عملکرد و خصوصیات مواد کربنی مشتقشده از زیست توده ارائه میدهند، در حالی که بخشهای آخر این جلد ویرایششده کاربردهای مواد کربن مشتقشده از زیست توده مانند کاتالیز، حسگرها، فعالیت میکروبکشی، حذف مواد شیمیایی سمی، دارو را مورد بحث قرار میدهد. تحویل، و تبدیل انرژی و برنامه های ذخیره سازی. این کتاب همچنین شامل: مقدمه ای کامل بر تولید مواد کربنی مشتق شده از زیست توده و همچنین خصوصیات آنها. اکتشافات جامع مواد مبتنی بر کربن مشتق شده از زیست توده برای کاربردهای میکروب کش و نانومواد مبتنی بر کربن تهیه شده از زیست توده برای کاتالیز. بحثهای عملی نقاط کوانتومی کربن مشتقشده از زیست توده برای حسگرهای فلورسانس و نانومواد کربن مزوپور برای تحویل دارو و کاربردهای تصویربرداری. بررسی های عمیق کربن مشتق شده از زیست توده به عنوان مواد الکترود برای باتری ها و کربن متخلخل سنتز شده از زیست توده برای سلول های سوختی. ایده آل برای دانشمندان مواد و همچنین شیمی دانان صنعتی و بیوشیمی دانان، مواد کربن مشتق شده از زیست توده: تولید و کاربردها نیز به کتابخانه های الکتروشیمیدان ها و توسعه دهندگان حسگر تعلق دارد.
Explores the sustainable production of carbon materials and their applications Of increasing interest to practitioners and researchers in a variety of areas, biomass-derived carbon materials can be easily produced and possess the large surface areas and porosities that enable many applications in materials science, biochemistry, chemistry, and energy research. In Biomass-Derived Carbon Materials: Production and Applications, a team of accomplished researchers delivers a thorough and up-to-date exploration of the preparation and activation processes of biomass-derived carbon materials, the fabrication of composites, and assorted and multidisciplinary applications of the technology. The book also covers future opportunities for research and application. Introductory chapters provide information about the production, functionalization, and characterization of biomass-derived carbon materials, while the latter parts of this edited volume discuss the applications of biomass-derived carbon materials such as catalysis, sensors, microbicidal activity, toxic chemicals removal, drug delivery, and energy conversion and storage applications. The book also includes: A thorough introduction to the production of biomass-derived carbon materials, as well as their characterization. Comprehensive explorations of biomass-derived carbon-based materials for microbicidal applications and carbon-based nanomaterials prepared from biomass for catalysis. Practical discussions of biomass-derived carbon quantum dots for fluorescence sensors and mesoporous carbon nanomaterials for drug delivery and imaging applications. In-depth examinations of biomass-derived carbon as electrode materials for batteries and porous carbon synthesized from biomass for fuel cells. Ideal for materials scientists as well as industrial chemists and biochemists, Biomass-Derived Carbon Materials: Production and Applications also belongs in the libraries of electrochemists and sensor developers.
Cover Biomass-Derived Carbon Materials: Production and Applications Copyright Contents Preface Acknowledgments 1. Introduction to Biomass-Derived Carbon Materials 1.1 Introduction 1.2 Biomass Resources and Composition 1.2.1 Plant-Based Biomass 1.2.2 Fruit-Based Biomass 1.2.3 Microorganism-Based Biomass 1.2.4 Animal-Based Biomass 1.3 Condition for Precursor Selection of Biomass-Derived Carbon 1.4 Production Methods of Biomass-Derived Carbon 1.4.1 Carbonization 1.4.1.1 Hydrothermal Carbonization 1.4.1.2 Pyrolysis 1.5 Biomass-Derived Carbons (B-d-CMs) Activation Methods 1.5.1 Physical Activation 1.5.2 Chemical Activation 1.5.3 Combination of Physical and Chemical Activation 1.5.4 Modification and Structural Control of B-d-CMs 1.5.4.1 Surface Modification and Heteroatom Doping of B-d-CMs 1.5.4.2 B-d-CMs Surface Loading of Metal Oxides or Hydroxides 1.5.4.3 Surface Incorporation with Different Nanostructures 1.6 Production Process Description 1.7 Cost Analysis 1.8 Summary References 2. Introduction to Biowaste-Derived Materials 2.1 Introduction 2.2 Synthesis 2.2.1 Activation Mechanism of BW-AC by Physical Activation 2.2.2 Activation Mechanism of BW-ACs by Chemical Activation 2.2.2.1 Influence of Alkaline Activating Agents 2.2.2.2 Influence of Acidic Activating Agents 2.2.2.3 Influence of Neutral Activating Agents 2.2.2.4 Influence of Self-Activating Agents 2.3 Characterization 2.3.1 Electron Microscopes 2.3.2 HR-TEM Analysis 2.3.3 FTIR Spectroscopy 2.3.4 Raman Spectroscopy 2.3.5 XPS Analysis 2.3.6 XRD Patterns 2.3.7 BET Analysis 2.4 Properties 2.4.1 Surface Defects in BW-AC 2.4.2 Characterizations of Carbon Defects 2.4.3 Intrinsic Carbon Defects Activity 2.4.4 Heteroatom Doping Defects (or) Extrinsic Carbon Defects Activity 2.4.5 Electronic Band Structure Properties 2.5 Summary References 3. Biomass-derived Carbon-based Materials for Microbicidal Applications 3.1 Introduction 3.2 Biomass Materials 3.2.1 Carbon and Its Derivatives 3.3 Microbicidal 3.3.1 Mechanism of Action 3.3.2 Microbicidal Resistance 3.3.3 Factors Affecting Microbicidal Resistance 3.4 Microbicidal Performance of Biomass-Derived Carbonaceous Materials 3.4.1 Role of Material Physicochemical Properties 3.4.1.1 Structural Destruction 3.4.1.2 Oxidative Stress 3.4.1.3 Wrapping Effect 3.4.1.4 Photothermal Effect 3.4.1.5 Extraction of Lipid 3.4.1.6 Metabolic Inhibitory Effect 3.5 Bioengineering Prospective Toward Carbonaceous Materials 3.5.1 Wound Dressing 3.5.2 Surface Modifications (Coating) on Medical Devices 3.5.3 Nanoantibiotic Formulations 3.6 Biosafety 3.7 Conclusion and Future Perspectives Acknowledgment References 4. Carbon-Based Nanomaterials Prepared from Biomass for Catalysis 4.1 Introduction 4.2 Preparation of Biomass-Derived Carbon-Based Nanomaterials 4.3 Graphene 4.3.1 Preparation of Graphene 4.3.2 Graphene from Different Sources 4.4 Carbon Nanotubes (CNTs) 4.4.1 Synthesis of CNTs 4.4.2 Synthesis of CNTs Using Biomass Materials 4.5 Carbon Quantum Dots (CQDs) 4.5.1 CQDs from Biomass 4.6 Catalytic Applications of Carbon-Based Nanomaterials 4.6.1 Potential Advantages in Using Carbon-Based Nanomaterials for Advanced Catalysts 4.6.2 Photocatalysts 4.6.3 Electro Catalysts 4.7 Conclusions, Future Outlook, and Challenges Acknowledgments References 5. Biomass-Derived Carbon Quantum Dots for Fluorescence Sensors 5.1 Introduction 5.2 Characterization of CDs 5.3 Optical Properties 5.3.1 Absorbance 5.3.2 Fluorescence 5.4 Methods for the Synthesis of CDs 5.4.1 Hydrothermal Carbonization Method 5.4.2 Microwave Method 5.4.3 Chemical Oxidation Method 5.4.4 Pyrolysis 5.5 Application of CDs 5.5.1 Metal Ion Sensing 5.5.1.1 Mercury (Hg2+) Sensor 5.5.1.2 Iron (Fe3+) Sensor 5.5.1.3 Lead (Pb2+) Sensor 5.5.1.4 Copper (Cu2+) Sensor 5.5.1.5 Miscellaneous Metal Ions 5.5.2 Anion Sensors 5.5.3 Miscellaneous Molecules 5.6 Conclusion and Future Perspectives References 6. Biomass-Derived Mesoporous Carbon Nanomaterials for Drug Delivery and Imaging Applications Balaji Maddiboyina1, Ramya Krishna Nakkala1, and Gandhi Sivaraman2 6.1 Introduction 6.2 Drug Delivery Systems Based on MCNs 6.2.1 Immediate-release DDS 6.2.2 Sustained-release DDS 6.2.3 Controlled/Targeted DDS 6.3 Photothermal Therapy 6.3.1 Synergistic Therapy 6.3.2 Cell Labeling 6.3.3 Removal of Toxic Substances 6.3.4 Transmembrane Delivery 6.3.5 Photoacoustic Imaging 6.3.6 Therapeutic Biomolecule Delivery 6.3.7 Biosensing 6.3.8 Magnetic Resonance (MR) Imaging 6.4 Conclusion and Future Perspectives References 7. Mesoporous Carbon Synthesized from Biomass as Adsorbent for Toxic Chemical Removal 7.1 Introduction 7.2 Synthesized Methods of Mesoporous Carbons from Biowaste or Biomass 7.3 Application of Mesoporous Activated Carbons 7.3.1 Removal of Dyes 7.3.1.1 GWAC as an Adsorbent for Methylene Blue and Metanil Yellow 7.3.1.2 Rice Husk (RH)-Derived Mesoporous Activated Carbon (AC) for Methylene Blue (MB) Dye Removal 7.3.1.3 Activated Carbon from Rattan Waste for Methylene Blue (MB) Removal 7.3.1.4 Activated Carbon from Cattail Biomass (CAC) for Malachite Green (MG) Removal 7.3.1.5 Wood SawdustWaste Activated Carbon (WACF-P) for Xylenol Orange (XO) Removal 7.3.1.6 Mesoporous Activated Carbon from Agricultural Waste for Methylene Blue Removal 7.3.1.7 Mesoporous Activated Carbon from Edible Fungi Residue (EFR-AC) for Reactive Black 5 Removal 7.3.1.8 Mesoporous Activated Carbon from PlantWastes for Methylene Blue (MB) Removal 7.3.1.9 Mesoporous Activated Carbon from Corozo oleifera Shell for Methylene Blue (MB) Removal 7.3.1.10 Mesoporous Activated Carbon from Coconut Coir Dust for Methylene Blue (MB) and Remazol Yellow (RY) Removal 7.3.1.11 Mesoporous Activated Carbon from Macadamia Nut Shell (MNS)Waste for Methylene Blue (MB) Removal 7.3.1.12 Mesoporous Activated Carbon from Neobalanocarpus Heimii Wood Sawdust (WSAC) for Methylene Blue (MB) Removal 7.3.2 Removal of Metal Ions 7.3.2.1 Use of Chicken Feather and Eggshell to Synthesize a Novel Magnetized Activated Carbon for Sorption of Heavy Metal Ions 7.3.2.2 Meso/micropore-Controlled Hierarchical Porous Carbon Derived from Activated Biochar as a High-Performance Adsorbent for Copper Removal 7.3.3 Removal of Phenolic Compounds 7.4 Conclusion and Future Outlooks References 8. Biomass-derived Carbon as Electrode Materials for Batteries 8.1 Introduction 8.1.1 Batteries 8.1.2 Classification of Batteries 8.1.3 Characteristics of Batteries 8.2 Role of Carbon with Mechanism of Rechargeable Batteries (RBs) 8.2.1 Li-Ion Batteries (LIBs) 8.2.2 Li-S Batteries (Li-S) 8.2.3 Na-Ion Batteries (SIBs) 8.2.4 Zn-Air Batteries (ZABs) 8.3 Biomass-derived Carbonaceous Materials 8.4 Electrochemical Performances of RBs using Biomass-derived Carbon Electrodes 8.4.1 Li-Ion Batteries (LIBs) 8.4.1.1 Biomass-derived Undoped Carbon Electrodes 8.4.1.2 Metal Oxides @ Biomass-derived Carbon Nanocomposite Electrodes 8.4.1.3 Metal Sulfides @ Biomass-derived Carbon Nanocomposite Electrodes 8.4.2 Na-Ion Batteries (SIBs) 8.4.2.1 Biomass-derived Undoped Carbon Electrodes 8.4.3 Li-S batteries 8.4.3.1 Biomass-derived Carbon Hosts 8.4.4 Zn-Air Batteries 8.5 Biomass-derived Heteroatom-Doped Carbon Electrodes for RBs 8.5.1 Single-Heteroatom-Doped Carbon Electrodes 8.5.2 Dual-Heteroatom-Doped Carbon Electrodes 8.6 Summary and Future Prospectives References 9. Recent Advances in Bio-derived Nanostructured Carbon-based Materials for Electrochemical Sensor Applications 9.1 Introduction 9.2 Conclusion and Future Perspectives References 10. Porous Carbon Derived From Biomass for Fuel Cells 10.1 Introduction 10.2 Fuel Cells – Theory and Fundamentals 10.3 Catalyst Support Materials 10.3.1 As a Catalyst 10.3.2 Synthesis Methods of Porous Carbon from Biomass 10.4 Porous Carbon Synthesis from Different Biomass 10.4.1 Oxygen Reduction Reaction (ORR) 10.5 Synthesis of Biomass-Derived ORR Catalyst for Fuel Cell 10.6 Future Outlook 10.7 Summary References 11. Biomass-Derived Carbon-Based Materials for Supercapacitor Applications 11.1 Introduction 11.1.1 Capacitor 11.1.2 Battery 11.2 Supercapacitor 11.2.1 Types of Supercapacitors 11.2.2 Electrical Double-Layer Capacitors (EDLC) 11.2.3 Pseudocapacitor 11.2.4 Hybrid Capacitors 11.3 Activated Carbon Obtained from Biomass for Supercapacitor Application 11.3.1 Essential for Carbon-based Electrodes 11.4 Electrochemical Measurements 11.5 Structural Diversities of Biomass-Derived Carbon for Supercapacitor Applications 11.5.1 Spherical Structure 11.5.2 Fibrous Structure 11.5.3 Tubular Structure 11.5.4 Sheet Structure 11.5.5 Porous Structure 11.5.6 Mesocrystal Structure 11.6 Conclusion and Future Perspectives References 12. Biomass-Derived Carbon for Dye-Sensitized and Perovskite Solar Cells 12.1 Introduction 12.2 DSSC Working Principle 12.3 DSSC Components 12.3.1 Transparent Conducting Substrate (TCO) 12.3.2 Photoanode 12.3.3 Dye Sensitizer 12.3.4 Electrolyte 12.3.5 Counter Electrode 12.4 Perovskite Solar Cells 12.5 Tunability of Bandgap Energy 12.6 Development of Perovskite Solar Cells from Dye-Sensitized Solar Cells 12.6.1 Working Principle of PSC 12.6.2 Perovskite Solar Cells Architecture 12.6.3 Hole Transport Material 12.7 Biomass-Derived Carbon Counter Electrode for DSSC 12.7.1 Performance of DSSC with Counter Electrode via Bio-derived Carbon 12.7.2 Biomass-Derived Carbon as a Counter Electrode for Perovskite Solar Cells 12.8 Conclusion and Future Perspectives References 13. Recent Advances of Biomass-Derived Porous Carbon Materials in Catalytic Conversion of Organic Compounds 13.1 Introduction 13.2 Synthesis Procedures 13.2.1 Carbonization 13.2.1.1 Hydrothermal Carbonization (HTC) 13.2.1.2 Pyrolysis 13.2.2 Activation 13.2.2.1 Physical Activation 13.2.2.2 Chemical Activation 13.2.3 Physicochemical Activation 13.2.4 Microwave-based synthesis 13.2.5 Functionalization/Doping/Composites of ACs 13.3 Applications 13.3.1 Heterogeneous Catalysis 13.4 Conclusion and Future Challenges References 14. Summary on Properties of Bio-Derived Carbon Materials and their Relation with Applications 14.1 Removal of Toxic Chemicals 14.2 Electrode Materials for Batteries 14.3 Electrochemical Sensor Applications 14.4 Fuel Cell Applications References Index