دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری سوخت ویرایش: نویسندگان: Ganti S. Murthy, Edgard Gnansounou, Samir Kumar Khanal, Ashok Pandey سری: ISBN (شابک) : 0128192429, 9780128192429 ناشر: Elsevier سال نشر: 2021 تعداد صفحات: 420 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 55 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Biomass, Biofuels, Biochemicals: Green-Economy: Systems Analysis for Sustainability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زیست توده، سوخت های زیستی، بیوشیمیایی: اقتصاد سبز: تجزیه و تحلیل سیستم ها برای پایداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front cover Half title Full title Copyright Contents Contributors Preface CHAPTER ONE - Systems analysis and its relevance for the sustainability transitions 1.1 Introduction 1.2 Importance of systems analysis for sustainable development 1.3 Understanding the systems 1.4 Structure and behavior of systems 1.5 Making sense of data and understanding bias in analyzing systems 1.6 Relevance of systems analysis for a transition to bioeconomy 1.7 Conclusions and perspectives References CHAPTER TWO - Techno-economic assessment 2.1 Introduction 2.2 Different methods used in techno-economic analysis/assessment 2.3 Basic Steps of techno-economic analysis/assessment 2.4 Uncertainty and sensitivity analysis 2.5 Real option analysis 2.6 Tools, software, and data sources to conduct techno-economic analysis/assessment 2.7 Worked example 2.8 Conclusions and perspectives References CHAPTER THREE - Environmental impacts 3.1 Introduction 3.2 Methods used for assessing the environmental impacts 3.3 Life cycle assessment 3.4 Life cycle assessment/analysis methodology 3.4.1 Goal definition and scoping 3.4.2 Life cycle inventory 3.4.3 Life cycle impact assessment 3.4.4 Life cycle interpretation 3.5 Life cycle assessment/analysis software and life cycle inventory databases 3.6 Worked example 3.7 Perspectives 3.8 Conclusions and perspectives References CHAPTER FOUR - Environmental risk assessment 4.1 Introduction 4.2 What is risk analysis? 4.3 Risk analysis method 4.3.1 Risk management 4.3.2 Risk assessment 4.3.3 Risk communication 4.4 Databases, tools, and software 4.5 Examples 4.6 Perspectives 4.7 Conclusions and perspectives References CHAPTER FIVE - Resource assessment 5.1 Introduction 5.2 Land resources 5.3 Water resources 5.4 Nutrient resources 5.5 Metals and minerals 5.6 Examples 5.7 Conclusions and perspectives References CHAPTER SIX - Policy, governance, and social aspects 6.1 Introduction 6.2 Complexities of policy making 6.3 Commonly used policy making models 6.4 Policy making frameworks 6.5 Social and governance aspects 6.6 Case studies 6.6.1 Case Study 1. Biofuels in Brazil 6.6.2 Case Study 2. Biogas in the European Union 6.6.3 Case Study 3. Biogas in India 6.7 Conclusions and perspectives References CHAPTER SEVEN - Resilience thinking 7.1 Introduction 7.2 Understanding and quantifying resilience 7.3 Resilience thinking in systems analysis 7.4 Conclusions and perspectives References CHAPTER EIGHT - General logic-based method for assessing the greenness of products and systems 8.1 Introduction 8.2 The sustainability value added 8.3 The logic-based model 8.3.1 Classification of the sustainability indicators 8.3.2 Outlining the development and utilization of the LBM 8.4 Application for assessing the sustainability of products and systems 8.4.1 Extending the conventional conception of sustainability 8.4.1.1 Determinants 8.4.1.1.1 Determinant 1—A0: ecology 8.4.1.1.2 Determinant 2—AB environmental social 8.4.1.1.3 Determinant 3—AC environmental economy 8.4.1.1.4 Determinant 4—B0 social wellbeing 8.4.1.1.5 Determinant 5—BC social economy 8.4.1.1.6 Determinant 6—C0 economic profitability 8.4.1.2 Rule base 8.4.2 Alternative paradigm of sustainability 8.5 Conclusions and perspectives References CHAPTER NINE - A systems analysis of first- and second-generation ethanol in the United States 9.1 Introduction 9.1.1 Dry milling corn ethanol technology 9.1.2 Wet milling technology 9.1.3 Second-generation ethanol 9.2 Systems analysis of ethanol technologies 9.2.1 Corn ethanol case study 9.2.1.1 Technical feasibility analysis of corn ethanol in the United States 9.2.1.2 Techno-economic analysis of corn ethanol in the United States 9.2.1.3 Environmental impact assessment of corn ethanol in the United States 9.2.1.4 Resource use for corn ethanol in the United States 9.2.2 Cellulosic ethanol in the United States 9.2.2.1 Technical feasibility analysis of cellulosic ethanol in the United States 9.2.2.2 Techno-economic analysis of cellulosic ethanol in the United States 9.2.2.3 Environmental impact assessment of cellulosic ethanol in the United States 9.2.2.4 Resource use for cellulosic ethanol in the United States 9.3 Conclusions and perspectives References CHAPTER TEN - Solar energy in India 10.1 Introduction 10.2 Development of solar energy in India 10.3 Challenges to solar energy in India 10.4 Innovative responses to the challenges 10.5 Overall scenario 10.6 Conclusions and perspectives References CHAPTER ELEVEN - A systems analysis of solar and wind energy in the United States 11.1 Introduction 11.2 Technical feasibility analysis 11.2.1 Can we generate 100% electricity with solar and wind technologies? 11.2.2 Renewable electricity futures study 11.2.3 Storage 11.3 Environmental Impact assessment 11.3.1 Wind 11.3.2 Solar 11.4 Resource sustainability analysis 11.4.1 Wind energy resource sustainability 11.4.1.1 Wind energy land and water use 11.4.1.2 Wind turbine end of life 11.4.2 Solar energy resource sustainability 11.4.2.1 First-generation solar panel resource requirements 11.4.2.2 Second-generation solar panel resource requirements 11.4.2.3 Third-generation solar panel resource requirements 11.4.2.4 Concentrating solar energy resource requirements 11.4.2.5 Solar energy land use 11.4.2.6 Solar energy water use 11.4.2.7 Solar energy end of life 11.5 Policy, governance, and social impact analysis 11.6 Conclusions and perspectives References CHAPTER TWELVE - Biofuels and bioproducts in India 12.1 Introduction 12.2 Systems analysis of biofuel technologies 12.3 Resource assessment for bioethanol from agricultural residues 12.4 Techno-economic analysis 12.5 Environmental impact assessment 12.6 Policy and social aspects of biofuels in India 12.7 Conclusions and perspectives References CHAPTER THIRTEEN - A case study on integrated systems analysis for biomethane use 13.1 Introduction 13.2 Dimensions of systems analysis 13.2.1 Technology 13.2.2 Economics 13.2.3 Environment 13.2.4 Policy 13.2.5 Market 13.2.6 Social aspects 13.3 Case study of Ireland for biomethane use 13.3.1 Background 13.3.2 What is the role of technology and economics in system analysis? 13.3.3 How policy influences technology commercialization? 13.4 Conclusions and perspectives References CHAPTER FOURTEEN - Alternative ammonia production processes and the use of renewables 14.1 Introduction 14.2 Ammonia production via current practices 14.2.1 Energy requirements of Haber–Bosch based on natural gas 14.2.2 Economics of the Haber–Bosch process 14.2.3 CO2 emissions from a Haber–Bosch plant 14.3 Haber–Bosch using electrochemical H2 production (E/H–B) 14.4 Direct electrochemical nitrogen reduction 14.5 Conclusions and perspectives Acknowledgement References CHAPTER FIFTEEN - Regional strategy of advanced biofuels for transportation in West Africa 15.1 Introduction 15.2 Case of West Africa 15.2.1 Optimal biofuel strategies 15.2.2 The matrix of biofuels 15.2.2.1 Common results for the countries 15.2.2.2 Country specific results for each scenario 15.2.2.2.1 Pressure on available feedstock 15.2.2.2.2 Economic considerations 15.2.2.2.3 Final energy consumption 15.2.3 Recommendations 15.2.3.1 Recommended biofuels strategy 15.2.3.2 Specific characteristics per country of the recommended strategy 15.2.3.2.1 Pressure on the feedstock in the case of the recommended strategy 15.2.3.2.2 Economic considerations in the case of the recommended strategy 15.2.3.2.3 Final bioenergy consumption in the case of the recommended strategy 15.3 Conclusions and perspectives References CHAPTER SIXTEEN - Advanced biofuels for transportation in West Africa: Common referential state-based strategies 16.1 Introduction 16.2 Types of feedstock for advanced biofuels 16.3 Biofuels for transportation 16.3.1 Biofuels 16.3.1.1 Bioethanol 16.3.1.2 Biobutanol 16.3.1.3 Biomethanol 16.3.1.4 Hydrogen 16.3.1.5 Biomethane 16.3.1.5.1 Biomethane production from anaerobic digestion 16.3.1.5.2 Biomethane production from biomass gasification 16.3.1.6 Electricity 16.3.2 Multifeedstock plants 16.3.2.1 Lignocellulosic bioethanol plant 16.3.2.2 Synthetic natural gas 16.3.2.3 Biomass integrated gasification combined cycle 16.4 Cases of West African states 16.4.1 Influences of the methodology 16.4.2 Evaluation of the available feedstock 16.4.3 Optimal biofuel strategies 16.4.3.1 Scenario 1 16.4.3.2 Scenario 2 16.4.3.3 Scenario 3 16.4.3.4 Scenario 4 16.4.3.5 Scenario 5 16.4.3.6 Scenario 6 16.4.3.7 Scenario 7 16.4.3.8 Scenario 8 16.4.3.9 Scenario 9 16.4.3.10 Scenario 10 16.4.3.11 Scenario 11 16.4.3.12 Scenario 12 16.4.3.13 Scenario 13 16.4.3.13.1 Cases of Benin and Nigeria 16.4.3.13.2 Case of Togo 16.4.3.14 Scenario 14 16.4.3.15 Scenario 15 16.4.3.16 Scenario 16 16.4.4 Robustness analyses 16.4.4.1 Matrix of biofuels and share of the biofuels in the final energy 16.4.4.1.1 Values of P1, P2, and W 16.5 Conclusions and perspectives References CHAPTER SEVENTEEN - Semantic sustainability characterization of biorefineries: A logic-based model 17.1 Introduction 17.2 The problematic of sustainability characterization 17.2.1 Improvement of the energy efficiency 17.2.2 Developing the logic-based model for sustainability characterization 17.2.2.1 Background of the model 17.2.2.2 Criteria for selecting the indicators 17.2.2.2.1 Economic indicators 17.2.2.2.2 Social indicators 17.2.2.2.3 Environmental indicators 17.2.2.3 Rule-base 17.3 Case study 17.3.1 Description of the case study 17.3.1.1 Process design 17.3.1.2 Context 17.3.2 Specific indicators 17.3.2.1 Economic specific indicators 17.3.2.1.1 Economic viability of the whole biorefinery 17.3.2.1.2 Economic cross-subsidy between the products’ value chains 17.3.2.2 Social specific indicators 17.3.2.2.1 Social acceptability 17.3.2.2.2 Social well-being and prosperity 17.3.2.2.3 Energy security 17.3.2.2.4 Resources conservation 17.3.2.2.5 Rural development and workforce 17.3.2.3 Environmental specific indicators 17.3.2.3.1 Land use 17.3.2.3.2 Local environment 17.3.2.3.3 Biodiversity 17.3.2.3.4 Global environment 17.3.3 Values of general indicators, determinants, and sustainability grade 17.4 Conclusions and perspectives References CHAPTER EIGHTEEN - Solid biofuels 18.1 Introduction 18.2 Solid biofuel types 18.2.1 Unprocessed solid biofuels 18.2.1.1 Dry animal manure 18.2.1.2 Fuelwood 18.2.1.3 Wood and agricultural industry residues 18.2.2 Minimally processed solid biofuels 18.2.2.1 Wood chips 18.2.2.2 Municipal solid waste 18.2.3 Processed solid biofuels 18.2.3.1 Torrefied biomass and hydrochar 18.2.3.2 Briquettes and pellets 18.3 Solid biofuel properties 18.3.1 Physical properties 18.3.1.1 Moisture 18.3.1.2 Bulk density 18.3.1.3 Particle size and density 18.3.1.4 Mechanical durability 18.4 Chemical properties 18.4.1 Volatile Matter 18.4.2 Ash content and melting properties 18.4.3 Fixed carbon 18.4.4 Heating value (calorific value) 18.4.5 Carbon and hydrogen contents 18.4.6 Sulphur content 18.4.7 Heavy metals 18.5 Costs of solid biofuels supply 18.5.1 Cost of feedstock production/acquisition 18.5.2 Costs of feedstock logistics and conversion to solid biofuels 18.5.3 An example of costs of solid biofuels 18.6 Life-cycle environmental impacts 18.6.1 Carbon cycle of solid biofuels 18.6.2 Energy use and GHG emissions of solid biofuel systems 18.6.3 Case studies of environmental impacts of solid biofuels 18.7 Solid biofuel policies 18.7.1 Policies promoting renewable energy 18.7.1.1 Demand-side policies 18.7.1.2 Supply-side policies 18.7.2 Policies regulating GHG emissions and promoting “emissions trading” 18.8 Opportunities for using solid biofuels 18.9 Challenges for solid biofuels 18.9.1 Technological limitations 18.9.2 Uncertainty of feedstock supply 18.9.3 Environmental impacts 18.9.4 Social and economic impacts 18.10 Conclusions and perspectives References CHAPTER NINETEEN - Potential value-added products from wineries residues 19.1 Introduction 19.2 A large diversity of wastes/residues of grape 19.2.1 Wastes VS residues 19.2.2 Viticulture waste 19.2.3 Winery wastes and residues 19.2.4 Estimation of the potential of wastes and residues 19.3 Valorization of the residues and wastes 19.3.1 Composition of the wastes/residues 19.3.2 Conventional valorization of the wastes/residues 19.3.3 Potential valorization from viticulture and viniculture wastes/residues 19.3.3.1 Potential utilization of grape marc (pomace) 19.3.3.2 Potential utilization of grape stalk 19.3.3.3 Potential utilization of wine lees 19. 3.3.4 Potential utilization of vine shoots 19.3.3.5 Biogas and other products from winery wastewater 19.4 Proposed biorefinery scenario using zero-waste cascading valorization of wastes and residues 19.5 Conclusions and perspectives References Index Back cover