ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biomass, Biofuels, Biochemicals: Green-Economy: Systems Analysis for Sustainability

دانلود کتاب زیست توده، سوخت های زیستی، بیوشیمیایی: اقتصاد سبز: تجزیه و تحلیل سیستم ها برای پایداری

Biomass, Biofuels, Biochemicals: Green-Economy: Systems Analysis for Sustainability

مشخصات کتاب

Biomass, Biofuels, Biochemicals: Green-Economy: Systems Analysis for Sustainability

دسته بندی: فن آوری سوخت
ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 0128192429, 9780128192429 
ناشر: Elsevier 
سال نشر: 2021 
تعداد صفحات: 420 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 55 مگابایت 

قیمت کتاب (تومان) : 50,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Biomass, Biofuels, Biochemicals: Green-Economy: Systems Analysis for Sustainability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب زیست توده، سوخت های زیستی، بیوشیمیایی: اقتصاد سبز: تجزیه و تحلیل سیستم ها برای پایداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front cover
	Half title
	Full title
	Copyright
Contents
Contributors
Preface
CHAPTER ONE - Systems analysis and its relevance for the sustainability transitions
	1.1 Introduction
	1.2 Importance of systems analysis for sustainable development
	1.3 Understanding the systems
	1.4 Structure and behavior of systems
	1.5 Making sense of data and understanding bias in analyzing systems
	1.6 Relevance of systems analysis for a transition to bioeconomy
	1.7 Conclusions and perspectives
	References
CHAPTER TWO - Techno-economic assessment
	2.1 Introduction
	2.2 Different methods used in techno-economic analysis/­assessment
	2.3 Basic Steps of techno-economic analysis/assessment
	2.4 Uncertainty and sensitivity analysis
	2.5 Real option analysis
	2.6 Tools, software, and data sources to conduct techno-economic analysis/assessment
	2.7 Worked example
	2.8 Conclusions and perspectives
	References
CHAPTER THREE - Environmental impacts
	3.1 Introduction
	3.2 Methods used for assessing the environmental impacts
	3.3 Life cycle assessment
	3.4 Life cycle assessment/analysis methodology
		3.4.1 Goal definition and scoping
		3.4.2 Life cycle inventory
		3.4.3 Life cycle impact assessment
		3.4.4 Life cycle interpretation
	3.5 Life cycle assessment/analysis software and life cycle ­inventory databases
	3.6 Worked example
	3.7 Perspectives
	3.8 Conclusions and perspectives
	References
CHAPTER FOUR - Environmental risk assessment
	4.1 Introduction
	4.2 What is risk analysis?
	4.3 Risk analysis method
		4.3.1 Risk management
		4.3.2 Risk assessment
		4.3.3 Risk communication
	4.4 Databases, tools, and software
	4.5 Examples
	4.6 Perspectives
	4.7 Conclusions and perspectives
	References
CHAPTER FIVE - Resource assessment
	5.1 Introduction
	5.2 Land resources
	5.3 Water resources
	5.4 Nutrient resources
	5.5 Metals and minerals
	5.6 Examples
	5.7 Conclusions and perspectives
	References
CHAPTER SIX - Policy, governance, and social aspects
	6.1 Introduction
	6.2 Complexities of policy making
	6.3 Commonly used policy making models
	6.4 Policy making frameworks
	6.5 Social and governance aspects
	6.6 Case studies
		6.6.1 Case Study 1. Biofuels in Brazil
		6.6.2 Case Study 2. Biogas in the European Union
		6.6.3 Case Study 3. Biogas in India
	6.7 Conclusions and perspectives
	References
CHAPTER SEVEN - Resilience thinking
	7.1 Introduction
	7.2 Understanding and quantifying resilience
	7.3 Resilience thinking in systems analysis
	7.4 Conclusions and perspectives
	References
CHAPTER EIGHT - General logic-based method for assessing the greenness of products and systems
	8.1 Introduction
	8.2 The sustainability value added
	8.3 The logic-based model
		8.3.1 Classification of the sustainability indicators
		8.3.2 Outlining the development and utilization of the LBM
	8.4 Application for assessing the sustainability of products and systems
		8.4.1 Extending the conventional conception of sustainability
			8.4.1.1 Determinants
				8.4.1.1.1 Determinant 1—A0: ecology
				8.4.1.1.2 Determinant 2—AB environmental social
				8.4.1.1.3 Determinant 3—AC environmental economy
				8.4.1.1.4 Determinant 4—B0 social wellbeing
				8.4.1.1.5 Determinant 5—BC social economy
				8.4.1.1.6 Determinant 6—C0 economic profitability
			8.4.1.2 Rule base
		8.4.2 Alternative paradigm of sustainability
	8.5 Conclusions and perspectives
	References
CHAPTER NINE - A systems analysis of first- and second-generation ethanol in the United States
	9.1 Introduction
		9.1.1 Dry milling corn ethanol technology
		9.1.2 Wet milling technology
		9.1.3 Second-generation ethanol
	9.2 Systems analysis of ethanol technologies
		9.2.1 Corn ethanol case study
			9.2.1.1 Technical feasibility analysis of corn ethanol in the United States
			9.2.1.2 Techno-economic analysis of corn ethanol in the United States
			9.2.1.3 Environmental impact assessment of corn ethanol in the United States
			9.2.1.4 Resource use for corn ethanol in the United States
		9.2.2 Cellulosic ethanol in the United States
			9.2.2.1 Technical feasibility analysis of cellulosic ethanol in the United States
			9.2.2.2 Techno-economic analysis of cellulosic ethanol in the United States
			9.2.2.3 Environmental impact assessment of cellulosic ethanol in the United States
			9.2.2.4 Resource use for cellulosic ethanol in the United States
	9.3 Conclusions and perspectives
	References
CHAPTER TEN - Solar energy in India
	10.1 Introduction
	10.2 Development of solar energy in India
	10.3 Challenges to solar energy in India
	10.4 Innovative responses to the challenges
	10.5 Overall scenario
	10.6 Conclusions and perspectives
	References
CHAPTER ELEVEN - A systems analysis of solar and wind energy in the United States
	11.1 Introduction
	11.2 Technical feasibility analysis
		11.2.1 Can we generate 100% electricity with solar and wind technologies?
		11.2.2 Renewable electricity futures study
		11.2.3 Storage
	11.3 Environmental Impact assessment
		11.3.1 Wind
		11.3.2 Solar
	11.4 Resource sustainability analysis
		11.4.1 Wind energy resource sustainability
			11.4.1.1 Wind energy land and water use
			11.4.1.2 Wind turbine end of life
		11.4.2 Solar energy resource sustainability
			11.4.2.1 First-generation solar panel resource requirements
			11.4.2.2 Second-generation solar panel resource requirements
			11.4.2.3 Third-generation solar panel resource requirements
			11.4.2.4 Concentrating solar energy resource requirements
			11.4.2.5 Solar energy land use
			11.4.2.6 Solar energy water use
			11.4.2.7 Solar energy end of life
	11.5 Policy, governance, and social impact analysis
	11.6 Conclusions and perspectives
	References
CHAPTER TWELVE - Biofuels and bioproducts in India
	12.1 Introduction
	12.2 Systems analysis of biofuel technologies
	12.3 Resource assessment for bioethanol from agricultural residues
	12.4 Techno-economic analysis
	12.5 Environmental impact assessment
	12.6 Policy and social aspects of biofuels in India
	12.7 Conclusions and perspectives
	References
CHAPTER THIRTEEN - A case study on integrated systems analysis for biomethane use
	13.1 Introduction
	13.2 Dimensions of systems analysis
		13.2.1 Technology
		13.2.2 Economics
		13.2.3 Environment
		13.2.4 Policy
		13.2.5 Market
		13.2.6 Social aspects
	13.3 Case study of Ireland for biomethane use
		13.3.1 Background
		13.3.2 What is the role of technology and economics in system analysis?
		13.3.3 How policy influences technology commercialization?
	13.4 Conclusions and perspectives
	References
CHAPTER FOURTEEN - Alternative ammonia production processes and the use of renewables
	14.1 Introduction
	14.2 Ammonia production via current practices
		14.2.1 Energy requirements of Haber–Bosch based on natural gas
		14.2.2 Economics of the Haber–Bosch process
		14.2.3 CO2 emissions from a Haber–Bosch plant
	14.3 Haber–Bosch using electrochemical H2 production (E/H–B)
	14.4 Direct electrochemical nitrogen reduction
	14.5 Conclusions and perspectives
	Acknowledgement
	References
CHAPTER FIFTEEN - Regional strategy of advanced biofuels for transportation in West Africa
	15.1 Introduction
	15.2 Case of West Africa
		15.2.1 Optimal biofuel strategies
		15.2.2 The matrix of biofuels
			15.2.2.1 Common results for the countries
			15.2.2.2 Country specific results for each scenario
				15.2.2.2.1 Pressure on available feedstock
				15.2.2.2.2 Economic considerations
				15.2.2.2.3 Final energy consumption
		15.2.3 Recommendations
			15.2.3.1 Recommended biofuels strategy
			15.2.3.2 Specific characteristics per country of the recommended strategy
				15.2.3.2.1 Pressure on the feedstock in the case of the recommended strategy
				15.2.3.2.2 Economic considerations in the case of the recommended strategy
				15.2.3.2.3 Final bioenergy consumption in the case of the recommended strategy
	15.3 Conclusions and perspectives
	References
CHAPTER SIXTEEN - Advanced biofuels for transportation in West Africa: Common referential state-based strategies
	16.1 Introduction
	16.2 Types of feedstock for advanced biofuels
	16.3 Biofuels for transportation
		16.3.1 Biofuels
			16.3.1.1 Bioethanol
			16.3.1.2 Biobutanol
			16.3.1.3 Biomethanol
			16.3.1.4 Hydrogen
			16.3.1.5 Biomethane
				16.3.1.5.1 Biomethane production from anaerobic digestion
				16.3.1.5.2 Biomethane production from biomass gasification
			16.3.1.6 Electricity
		16.3.2 Multifeedstock plants
			16.3.2.1 Lignocellulosic bioethanol plant
			16.3.2.2 Synthetic natural gas
			16.3.2.3 Biomass integrated gasification combined cycle
	16.4 Cases of West African states
		16.4.1 Influences of the methodology
		16.4.2 Evaluation of the available feedstock
		16.4.3 Optimal biofuel strategies
			16.4.3.1 Scenario 1
			16.4.3.2 Scenario 2
			16.4.3.3 Scenario 3
			16.4.3.4 Scenario 4
			16.4.3.5 Scenario 5
			16.4.3.6 Scenario 6
			16.4.3.7 Scenario 7
			16.4.3.8 Scenario 8
			16.4.3.9 Scenario 9
			16.4.3.10 Scenario 10
			16.4.3.11 Scenario 11
			16.4.3.12 Scenario 12
			16.4.3.13 Scenario 13
				16.4.3.13.1 Cases of Benin and Nigeria
				16.4.3.13.2 Case of Togo
			16.4.3.14 Scenario 14
			16.4.3.15 Scenario 15
			16.4.3.16 Scenario 16
		16.4.4 Robustness analyses
			16.4.4.1 Matrix of biofuels and share of the biofuels in the final energy
				16.4.4.1.1 Values of P1, P2, and W
	16.5 Conclusions and perspectives
	References
CHAPTER SEVENTEEN - Semantic sustainability characterization of biorefineries: A logic-based model
	17.1 Introduction
	17.2 The problematic of sustainability characterization
		17.2.1 Improvement of the energy efficiency
		17.2.2 Developing the logic-based model for sustainability characterization
			17.2.2.1 Background of the model
			17.2.2.2 Criteria for selecting the indicators
				17.2.2.2.1 Economic indicators
				17.2.2.2.2 Social indicators
				17.2.2.2.3 Environmental indicators
			17.2.2.3 Rule-base
	17.3 Case study
		17.3.1 Description of the case study
			17.3.1.1 Process design
			17.3.1.2 Context
		17.3.2 Specific indicators
			17.3.2.1 Economic specific indicators
				17.3.2.1.1 Economic viability of the whole biorefinery
				17.3.2.1.2 Economic cross-subsidy between the products’ value chains
			17.3.2.2 Social specific indicators
				17.3.2.2.1 Social acceptability
				17.3.2.2.2 Social well-being and prosperity
				17.3.2.2.3 Energy security
				17.3.2.2.4 Resources conservation
				17.3.2.2.5 Rural development and workforce
			17.3.2.3 Environmental specific indicators
				17.3.2.3.1 Land use
				17.3.2.3.2 Local environment
				17.3.2.3.3 Biodiversity
				17.3.2.3.4 Global environment
		17.3.3 Values of general indicators, determinants, and sustainability grade
	17.4 Conclusions and perspectives
	References
CHAPTER EIGHTEEN - Solid biofuels
	18.1 Introduction
	18.2 Solid biofuel types
		18.2.1 Unprocessed solid biofuels
			18.2.1.1 Dry animal manure
			18.2.1.2 Fuelwood
			18.2.1.3 Wood and agricultural industry residues
		18.2.2 Minimally processed solid biofuels
			18.2.2.1 Wood chips
			18.2.2.2 Municipal solid waste
		18.2.3 Processed solid biofuels
			18.2.3.1 Torrefied biomass and hydrochar
			18.2.3.2 Briquettes and pellets
	18.3 Solid biofuel properties
		18.3.1 Physical properties
			18.3.1.1 Moisture
			18.3.1.2 Bulk density
			18.3.1.3 Particle size and density
			18.3.1.4 Mechanical durability
		18.4 Chemical properties
			18.4.1 Volatile Matter
			18.4.2 Ash content and melting properties
			18.4.3 Fixed carbon
			18.4.4 Heating value (calorific value)
			18.4.5 Carbon and hydrogen contents
			18.4.6 Sulphur content
			18.4.7 Heavy metals
	18.5 Costs of solid biofuels supply
		18.5.1 Cost of feedstock production/acquisition
		18.5.2 Costs of feedstock logistics and conversion to solid biofuels
		18.5.3 An example of costs of solid biofuels
	18.6 Life-cycle environmental impacts
		18.6.1 Carbon cycle of solid biofuels
		18.6.2 Energy use and GHG emissions of solid biofuel systems
		18.6.3 Case studies of environmental impacts of solid biofuels
	18.7 Solid biofuel policies
		18.7.1 Policies promoting renewable energy
			18.7.1.1 Demand-side policies
			18.7.1.2 Supply-side policies
		18.7.2 Policies regulating GHG emissions and promoting “emissions trading”
	18.8 Opportunities for using solid biofuels
	18.9 Challenges for solid biofuels
		18.9.1 Technological limitations
		18.9.2 Uncertainty of feedstock supply
		18.9.3 Environmental impacts
		18.9.4 Social and economic impacts
	18.10 Conclusions and perspectives
	References
CHAPTER NINETEEN - Potential value-added products from wineries residues
	19.1 Introduction
	19.2 A large diversity of wastes/residues of grape
		19.2.1 Wastes VS residues
		19.2.2 Viticulture waste
		19.2.3 Winery wastes and residues
		19.2.4 Estimation of the potential of wastes and residues
	19.3 Valorization of the residues and wastes
		19.3.1 Composition of the wastes/residues
		19.3.2 Conventional valorization of the wastes/residues
		19.3.3 Potential valorization from viticulture and viniculture wastes/residues
			19.3.3.1 Potential utilization of grape marc (pomace)
			19.3.3.2 Potential utilization of grape stalk
			19.3.3.3 Potential utilization of wine lees
			19. 3.3.4 Potential utilization of vine shoots
			19.3.3.5 Biogas and other products from winery wastewater
	19.4 Proposed biorefinery scenario using zero-waste cascading valorization of wastes and residues
	19.5 Conclusions and perspectives
	References
Index
	Back cover




نظرات کاربران