دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Alan H.B. Wu Ph.D. (editor), W. Frank Peacock MD (editor) سری: ISBN (شابک) : 0128163461, 9780128163467 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 462 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب Biomarkers for Traumatic Brain Injury به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نشانگرهای زیستی برای آسیب تروماتیک مغزی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بیومارکرها برای آسیب مغزی تروماتیک یک نمای کلی جامع در مورد انتخاب و اجرای بیومارکرهای مبتنی بر سرم و بزاق برای آسیب مغزی تروماتیک ارائه می دهد. این کتاب یک تحلیل اقتصادی برای پیادهسازی نشانگرهای زیستی TBI در عمل بالینی ارائه میکند. علاوه بر این، ابزارهای تحلیلی مورد نیاز برای پیادهسازی نشانگرهای زیستی TBI، از جمله مشخصات ابزارهای آزمایش و نرمافزارهای تفسیری را مورد بحث قرار میدهد. متخصصان مغز و اعصاب، پزشکان بخش اورژانس، متخصصان و آزمایشگاههای بالینی این کتاب را منبعی عالی برای آشنایی با مسائل و فرآیندهای مربوط به نشانگرهای زیستی TBI خواهند یافت.
تقریباً 2 میلیون نفر در ایالات متحده دارای مغزی آسیبزا هستند. آسیب (TBI) هر ساله با بیش از 250000 بستری شدن در بیمارستان و 50000 مرگ. افزایش قابل توجهی در علاقه به تشخیص ضربه مغزی خفیف، به ویژه در دنیای ورزش وجود دارد. در حالی که تصویربرداری استاندارد طلایی بوده است، این روش ها پرهزینه هستند و همیشه در دسترس نیستند. پتانسیل زیادی در استفاده از نشانگرهای زیستی مبتنی بر سرم وجود دارد، از این رو این کتاب به دنبال روشن کردن خوانندگان در مورد احتمالات جدید است.
Biomarkers for Traumatic Brain Injury provides a comprehensive overview on the selection and implementation of serum-based and saliva-based biomarkers for traumatic brain injury. The book presents an economic analysis for implementing TBI biomarkers into clinical practice. In addition, it discusses the analytical tools needed to implement TBI biomarkers, including specifications for testing instruments and interpretative software. Neurologists, emergency department physicians, intensivists, and clinical laboratorians will find this book a great resource from which to familiarize themselves with the issues and processes regarding TBI biomarkers.
Approximately 2 million people in the U.S. sustain a traumatic brain injury (TBI) each year with over 250,000 hospitalizations and 50,000 deaths. There has been a significant rise in interest in diagnosing mild concussions, particularly in the sports world. While imaging has been the gold standard, these procedures are costly and not always available. There is great potential in using serum-based biomarkers, hence the book seeks to enlighten readers on new possibilities.
Cover Biomarkers for Traumatic Brain Injury Copyright Contents List of Contributors Foreword: The hit that would change football forever Traumatic brain injury event Detection of traumatic brain injury Changes to playing style to avoid traumatic brain injury Section I: Introduction 1 Introduction—scope of the problem 1.1 Scope of the problem 1.2 Candidate biomarkers 1.3 Blood biomarkers for traumatic brain injury 1.4 Nonblood biomarkers 1.5 Conclusions Disclaimers and Acknowledgments References 2 The need for traumatic brain injury markers 2.1 Introduction 2.2 Context 2.3 Probabilities, decision-making, and test thresholds 2.4 Acute assessment of patients with traumatic brain injury in the emergency department 2.5 Identification of those patients who will have ongoing problems following traumatic brain injury and the prediction of ... 2.6 Issues for children 2.7 Issues for women 2.8 Issues for future research to consider 2.8.1 Summary—the importance of being able to predict post-concussion symptoms 2.8.2 Promising areas of predictive biomarker research References 3 Regulatory considerations for diagnostics and biomarkers of traumatic brain injury 3.1 Background 3.2 Risk-based classification of medical devices 3.2.1 Class I—Low-risk devices 3.2.2 Class II—Moderate-risk devices—premarket notification—510(k) program 3.2.3 Special 510(k) 3.2.4 Abbreviated 510(k) 3.2.5 Class III—High-risk devices—premarket approval 3.3 Non-standard regulatory pathways 3.3.1 Humanitarian use devices for rare disorders 3.3.2 De novo 510(k) 3.3.3 Use of real-world data in device clearance/approvals—a new initiative 3.3.4 Oversight of laboratory developed tests 3.4 Evolving European regulatory framework 3.5 Elements of Food and Drug Administration review and regulation—case study of two traumatic brain injury-related devices 3.5.1 Case study 1: ImPACT and ImPACT pediatric 3.5.1.1 Test battery validity 3.5.1.2 Reliability 3.5.2 Case study 2: Banyan brain trauma indicator 3.6 User fees and their impact on Food and Drug Administration Section II: Pathophysiology of TBI 4 Peripheral markers of TBI and blood−brain barrier disruption 4.1 Introduction 4.2 Biomarkers’ properties 4.2.1 Nucleic acids as biomarkers 4.2.1.1 Genetics of posttraumatic events 4.2.1.2 Cell death and cfDNA are posttraumatic events 4.2.1.3 MicroRNAs as biomarkers 4.2.1.3.1 BBB, protein markers, and TBI 4.3 Conclusions Reference 5 The role of autoimmunity after traumatic brain injury 5.1 Introduction 5.2 Traumatic brain injury may induce autoimmune disorders 5.3 How the immune system responds to traumatic brain injury? Role of innate and adaptive immune responses 5.3.1 Innate immune response to traumatic brain injury: role of cytokines and chemokines 5.3.2 Innate immune response after traumatic brain injury: role of immune cells 5.3.3 Adaptive immunity after traumatic brain injury 5.4 Mechanism of autoimmunity development after traumatic brain injury 5.4.1 Autoantigens and autoantibodies 5.4.2 Role of B and T cells in traumatic brain injury-induced autoimmunity 5.4.2.1 B cells and autoantibody production 5.4.2.2 T cells and traumatic brain injury-induced autoimmunity 5.5 Autoantibodies as putative biomarkers 5.6 Conclusion References 6 Traumatic brain injury: glial fibrillary acidic protein posttranslational modification Abbreviations 6.1 Introduction 6.2 The protein posttranslational modification, citrullination 6.3 Role of citrullination in the polymerization of glial fibrillary acidic protein 6.4 Citrullination of glial fibrillary acidic protein as a hallmark mechanism in the pathogenesis of traumatic brain injury 6.5 Citrullination: method of detection 6.6 Conclusion and future research References Section III: TBI biomarkers in medical practice 7 Economics of traumatic brain injury biomarkers 7.1 Introduction 7.1.1 Traumatic brain injury biomarkers 7.1.2 Economic evaluations of traumatic brain injury biomarkers 7.1.3 Current traumatic brain injury standard of care: computed tomography and magnetic resonance imaging 7.1.4 Creating benchmark cost data for traumatic brain injury biomarkers 7.2 Methods 7.2.1 Procedures 7.2.2 Measurements 7.2.2.1 Clinically diagnosed traumatic brain injury 7.2.2.2 CT and MRI utilization and costs 7.2.2.3 Veterans Health Administration health services costs 7.2.2.4 Comorbid conditions 7.2.3 Analysis 7.3 Results 7.4 Discussion 7.4.1 Study limitations 7.4.2 Implications for policy and practice 7.4.3 Directions for future research References 8 Electrophysiology monitoring 8.1 Introduction 8.2 The autonomic nervous system 8.2.1 Effect of traumatic brain injury on the autonomic nervous system 8.2.2 Autonomic nervous system biomarkers in traumatic brain injury 8.2.3 Autonomic nervous system biomarkers in traumatic brain injury rehabilitation 8.3 Event-related potentials 8.3.1 Early event-related potential components 8.3.2 Late event-related potential components 8.3.3 P300 event-related potential component 8.3.4 N2 event-related potential component 8.3.5 Event-related potentials as biomarkers in traumatic brain injury 8.3.5.1 Moderate-to-severe traumatic brain injury 8.3.5.2 Mild traumatic brain injury 8.3.6 Event-related potentials as biomarkers in traumatic brain injury recovery 8.4 Conclusion References 9 Traumatic brain injury therapeutics 9.1 Airway and ventilator management 9.2 Sedation and analgesia 9.3 Hyperosmolar therapy 9.4 External ventricular devices 9.5 Decompressive craniectomy/craniotomy 9.6 Therapeutic hypothermia 9.7 Seizure prophylaxis References Section IV: Classical TBI biomarkers 10 S100 biomarkers in patients with traumatic brain injury 10.1 Introduction 10.2 Biomarker family S100 10.4.1 General characteristics 10.4.2 Biological functions 10.4.3 Family member S100B 10.4.1.1 Special characteristics of S100B 10.4.1.2 Mechanism of pathologic increase of S100B 10.4.1.3 Half-life and elimination of S100B 10.3 Clinical applications of S100B 10.4.4 Applications in dermatology 10.4.5 Applications in neurosurgery 10.4 Current state of research regarding neurosurgical implications of S100B 10.4.6 Studies regarding diagnostic application of S100B 10.4.1.4 Influence of alcohol intoxication on diagnostic outcome 10.4.1.5 β-error in diagnostics 10.4.7 Studies regarding half-life and elimination of S100B 10.4.8 Studies regarding extracerebral sources of S100B 10.4.9 Prognostic value of S100B 10.5 Conclusion References 11 Pathophysiology and clinical implementation of traumatic brain injury biomarkers: neuron-specific enolase 11.1 Introduction 11.2 Neuron-specific enolase basics—physiology and pathophysiology 11.3 Neuron-specific enolase as a biomarker in pathological conditions 11.4 Neuron-specific enolase after ischemic brain damage 11.5 Neuron-specific enolase in brain trauma 11.5.1 Mild traumatic brain injury 11.6 Moderate and severe traumatic brain injury 11.7 Neuron-specific enolase in children 11.8 Limitations of neuron-specific enolase as a traumatic brain injury biomarker 11.9 Conclusion References 12 Traumatic brain injury biomarkers glial fibrillary acidic protein/ubiquitin C-terminal hydrolase L1 12.1 Computed tomography imaging 12.2 Ubiquitin C-terminal hydrolase L1 and glial fibrillary acidic protein 12.3 Predetermined cutoff and validation 12.4 Biomarker performance 12.4.1 Vignette 12.5 Specificity of glial fibrillary acidic protein/ubiquitin C-terminal hydrolase L1 12.5.1 Vignette 12.6 Glial fibrillary acidic protein and ubiquitin C-terminal hydrolase L1 trends over time 12.7 Use in m-traumatic brain injury 12.7.1 Vignette 12.8 Future directions References 13 Neurofilaments light chain/Neurofilaments heavy chain 13.1 Introduction 13.2 Neurofilament for traumatic brain injury diagnosis 13.3 Neurofilament levels for detecting secondary brain injury 13.4 Neurofilament levels for outcome prediction in patients with traumatic brain injury 13.5 Serum biomarkers of cardiac arrest/ultimate ischemic brain damage 13.6 Conclusion References 14 Tau protein, biomarker for traumatic brain injury 14.1 Introduction 14.2 Pathophysiology 14.3 Tau as a biomarker in cerebral spinal fluid 14.4 Tau as a biomarker in the blood 14.5 Conclusion References Section V: Novel TBI biomarkers 15 Neurogranin 15.1 Historical background 15.2 Physiologic function 15.3 Pathophysiology of brain disorders 15.3.1 Neurodegeneration 15.3.2 Neuroinflammation 15.3.3 Neuropsychiatric conditions 15.3.4 Neurovascular 15.4 Neurogranin and traumatic brain injury 15.5 Conclusions References 16 Myelin basic protein in traumatic brain injury 16.1 Myelin basic protein 16.1.1 Myelin and multiple sclerosis 16.1.2 Summary and future study References Section VI: Analytical testing consideration 17 Antibody selection, evaluation, and validation for analysis of traumatic brain injury biomarkers 17.1 Introduction 17.2 Finding the right antibody for a specific research application 17.3 Antibody evaluation and initial characterization 17.4 Immunological test method characteristics and validation 17.5 Diagnostic sensitivity and specificity, positive predictive value, negative predictive value, positive and negative li... 17.6 Antibodies for traumatic brain injury 17.7 What to report in a research publication 17.8 Concluding remarks References 18 Sensitive immunoassay testing platforms 18.1 Brief introduction to traumatic brain injury and current state of testing 18.2 Brief overview of neural tissue and cell types 18.3 Discussion of biomarkers and their limitations in testing for mild/moderate traumatic brain injury 18.3.1 Fluid type 18.3.2 Food and Drug Administration—approved laboratory test and limitations 18.3.3 Biomarkers more specific to axonal injury/mild or moderate traumatic brain injury 18.4 The need for multiplexed and sensitive assays 18.4.1 Why do we need multiplexed assays? 18.4.2 The barriers of traumatic brain injury biomarker testing in blood: the need for ultrasensitive assays 18.5 Digital enzyme-linked immunosorbent assay using single-molecule arrays 18.5.1 Measurement principles 18.5.2 Performance 18.5.3 Applications in neurology/traumatic brain injury 18.6 Single-molecule counting 18.6.1 Measurement principles 18.6.2 Performance 18.6.3 Applications in neurology/traumatic brain injury 18.7 Concluding remarks References 19 Clinical mass spectrometry and its applications in traumatic brain injuries 19.1 Introduction of mass spectrometry platform 19.2 Fundamentals of clinical mass spectrometry 19.2.1 Types of ionization methods 19.2.1.1 Electrospray ionization 19.2.1.2 Atmospheric pressure chemical ionization 19.2.1.3 Atmospheric pressure photoionization 19.2.1.4 Matrix-assisted laser desorption ionization 19.2.2 Mass analyzers 19.2.2.1 Overview 19.2.2.2 Time of flight mass analyzers 19.2.2.3 Triple-quadrupole mass analyzers 19.3 Clinical applications of mass spectrometry 19.3.1 Overview 19.3.2 Clinical toxicology: drugs of abuse and pain management 19.3.3 Endocrinology/steroid hormones 19.3.4 Therapeutic drug monitoring 19.3.5 Targeted mass spectrometer assay for clinical proteomics 19.4 Comparing immunoassays to clinical mass spectrometer 19.4.1 Specificity 19.4.2 Sensitivity 19.4.3 Multiplexing capability 19.4.4 Cost 19.5 The role of clinical mass spectrometry in the analysis of traumatic brain injury 19.5.1 Traumatic brain injury—a brief overview 19.5.2 Current status of mass spectrometry-based traumatic brain injury research 19.5.2.1 Overview 19.5.2.2 Lipidomics and metabolomics in traumatic brain injury research 19.5.2.3 Neuroproteomics in TBI research 19.6 New developments: FDA approval on the brain trauma indicator (Banyan BTI) 19.7 Future of clinical mass spectrometry in the diagnosis of traumatic brain injury 19.7.1 Challenges: from discovery research to the clinic 19.7.2 Opportunities: targeted mass spectrometry assays for traumatic brain injury biomarker validation and future clinical... 19.8 Summary References 20 Surface plasmon resonance 20.1 Introduction 20.2 History 20.3 The sensorgram 20.4 Grating-coupled Surface plasmon resonance 20.5 Surface plasmon resonance-based sensors 20.5.1 Localized surface plasmon resonance 20.5.2 Surface plasmon resonance-MS 20.5.3 Surface plasmon resonance imaging 20.5.4 Surface plasmon field-enhanced fluorescence spectroscopy 20.6 Biosensing applications of surface plasmon field-enhanced fluorescence spectroscopy 20.6.1 Cardiac troponin 20.6.2 D-dimer 20.6.3 Traumatic brain injury-related biomarkers 20.6.3.1 Glial fibrillary acidic protein 20.6.3.2 Neurogranin 20.6.4 Grating-coupled Surface plasmon field-enhanced fluorescence spectroscopy 20.7 Conclusion References 21 Point-of-care testing for concussion and traumatic brain injury 21.1 Introduction to point-of-care testing 21.2 Point-of-care testing for traumatic brain injury 21.2.1 Ease-of-use 21.2.2 Testing by nonmedical personnel 21.2.3 Use-case scenarios References Further reading Section VII: Non-blood TBI biomarker strategy 22 Clinical risk factors of traumatic brain injury 22.1 Introduction 22.2 Clinical risk factors in traumatic brain injury 22.2.1 Severity of traumatic brain injury and guideline-based treatment in high volume centers 22.2.2 Cranial imaging in patients with traumatic brain injury 22.2.3 Prehospital treatment – avoidance of secondary brain injury 22.2.4 In-hospital treatment – emergency department 22.2.5 In-hospital treatment – emergency surgical intervention 22.2.6 Predictive factors for prognosis of outcome in traumatic brain injury References 23 Saliva biomarkers of traumatic brain injury 23.1 Biomarkers of traumatic brain injury 23.2 Stress response profiling: a new method for unbiased discovery of traumatic brain injury biomarkers 23.3 Homeostatic pathways monitored by stress response profiling biomarkers 23.3.1 Redox stress response 23.3.2 Cellular detoxification 23.3.3 Protein chaperoning 23.3.4 DNA repair and modification 23.3.5 Adhesion, cytoskeleton, extracellular matrix, and exosomes 23.3.6 Cell cycle and energy metabolism 23.3.7 Apoptosis and autophagy 23.3.8 Neuroendocrine signaling 23.3.9 Immunity 23.3.10 Microbial stress response 23.3.11 Osmotic stress response 23.4 Pathway signature of traumatic brain injury 23.5 Saliva specimen for traumatic brain injury biomarkers 23.5.1 Standard saliva specimen 23.5.2 Whole saliva specimen 23.5.3 Biomarker assays for whole saliva 23.6 Saliva biomarkers of mild traumatic brain injury 23.7 Saliva biomarkers of severe traumatic brain injury 23.8 Conclusions Future directions References 24 Digital neurocognitive testing References 25 Electroencephalographic as a biomarker of concussion 25.1 Why should electroencephalographic be considered for use as a biomarker of concussion? 25.2 Standard clinical electroencephalographic using visual inspection 25.3 Evoked potentials 25.3.1 Brain stem auditory evoked potentials 25.3.2 Visual evoked potentials 25.3.3 Cognitive evoked potentials/event related potentials 25.4 Spectral analysis 25.5 3D electroencephalographic mapping—standardized low-resolution electromagnetic tomographic activity 25.6 Discriminant analyses methods 25.7 Practical application of electroencephalographic in the clinical setting 25.7.1 Case #1 25.7.2 Case #2 25.8 Future directions of electroencephalographic technologies in the field of concussion identification and management References Further reading 26 Neuropsychological testing 26.1 Neuropsychological tests 26.2 Memory 26.2.1 Brief Visuospatial Memory Test 26.2.2 Rey Auditory Verbal Learning Test 26.3 Processing speed 26.3.1 Trail Making Test Part A 26.3.2 Wechsler Adult Intelligence Scale IV processing speed index 26.4 Executive function 26.4.1 Controlled Oral Word Association Test 26.4.2 Wechsler Adult Intelligence Scale IV Complete 26.4.3 1D-KEFS color word interference 26.4.4 Trail Making Test Part B 26.5 Mood, postconcussive syndrome, posttraumatic stress disorder tests 26.5.1 Patient Health Questionnaire-9 and Center for Epidemiologic Studies Depression Scale 26.5.2 PTSD checklist for DSM-5 26.5.3 Rivermead Post-Concussion Symptoms Questionnaire 26.6 Biomarkers 26.6.1 Glial fibrillary acidic protein 26.6.2 Ubiquitin C-terminal hydrolase L1 26.6.3 Tau 26.6.4 Neuron-specific enolase 26.6.5 S-100β 26.6.6 Brain-derived neurotrophic factor 26.7 Conclusion Subject References 27 Outpatient risk stratification for traumatic brain injury References 28 Peptidomics and traumatic brain injury: biomarker utilities for a theragnostic approach 28.1 Introduction 28.2 Peptidome in biofluids as biomarkers 28.3 Serum 28.4 Cerebrospinal fluid 28.5 Plasma 28.6 Urine 28.7 Saliva 28.8 Tissue 28.9 Tear 28.10 Microvesicles and exosomes 28.11 Fractionation and separation 28.12 Peptide identification and data analysis 28.13 Peptidomic approach for discovery of novel proteolytic peptides in traumatic brain injury 28.14 Current mass spectrometric peptidomic technologies 28.15 Concluding remarks References 29 Autoantibodies in central nervous system trauma: new frontiers for diagnosis and prognosis biomarkers 29.1 Introduction 29.2 The immunological events following central nervous system injury 29.2.1 Initial signaling 29.2.2 Microglial activation 29.2.3 Peripheral innate immune activation 29.2.4 Adaptive immunity in traumatic brain injury and spinal cord injury 29.2.5 Role of autoimmunity 29.2.6 Neurotoxic waste removal via the glymphatic system is impaired posttraumatic brain injury 29.2.7 Autoantibodies as biomarkers in central nervous system trauma 29.2.8 List of identified autoantibodies 29.2.8.1 Myelin basic protein 29.2.8.2 GFAP 29.2.8.3 S100β protein 29.2.8.4 Acetylcholine receptor (α7 ACR) 29.2.8.5 Peroxiredoxin 6 29.2.8.6 Glutamate receptors (GluR1 and NR2A) 29.2.8.7 Other personalized autoantigens 29.2.9 Evaluation of autoantibodies as central nervous system injury biomarkers 29.3 Activation of B cells exacerbates secondary central nervous system injury 29.4 B cells as therapeutic targets for central nervous system injury 29.5 Conclusion References Index Back Cover