دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 ed.
نویسندگان: Shuba Gopal
سری:
ISBN (شابک) : 9780073133645, 0073133647
ناشر: MGraw-Hill
سال نشر: 2009
تعداد صفحات: 483
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Bioinformatics : a computing perspective به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بیوانفورماتیک: دیدگاه محاسباتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب توسط یک تیم نویسنده باتجربه نوشته شده است که نشان دهنده بسیاری از حوزه هایی است که رشته جدید بیوانفورماتیک از آن ها در حال ظهور است. رویکرد عقل سلیم آنها و ارائههای دقیق دقیق در بیوانفورماتیک: دیدگاه محاسباتی محاسبات و علوم زیستی را به شیوهای جذاب و منحصربهفرد ترکیب میکند.بیوانفورماتیک: یک رویکرد محاسباتی به دانشآموزان کمک میکند تا با مفاهیم کلیدی در علوم زیستی و دانش در مورد ابزارها و رویکردهای برنامه نویسی فعلی. این با موفقیت چالشهای محاسباتی جالبی را با پدیدههای بیولوژیکی مرتبط پیوند میدهد، به گونهای که نسل بعدی دانشمندان را درگیر میکند.
This book is written by an experienced author team representing the many areas from which the new discipline of Bioinformatics is emerging. Their common sense approach and carefully detailed presentations in Bioinformatics: A Computing Perspective blends computing and biological sciences in an engaging and unique way.Bioinformatics: A Computing Approach helps students become conversant with key concepts in the biological sciences and knowledgeable about current programming tools and approaches. It successfully ties interesting computational challenges to relevant biological phenomenon in a way that will engage the next generation of scientists.
Title Contents Chapter 1 Road Map 1.1 What Is Bioinformatics? 1.2 A Bioinformatics Team 1.3 What Defines Life? 1.4 A Systems Approach to Biology 1.5 Bioinformatics in Action 1.5.1 Deciphering a Killer: HIV and Bioinformatics 1.6 The Road Ahead Summary Key Terms Bibliography Chapter 2 Biological Basics 2.1 The Blind Engineer 2.1.1 The Case of the Peppered Moth 2.1.2 How Evolution Works 2.1.3 Evolution’s Palette 2.2 Compute Machine par Excellence 2.2.1 Cellular Organization and Complexity 2.2.2 Chemistry and Life 2.2.3 A Parts List for Life 2.3 The Languages of the Cell 2.3.1 Operating Systems for Cells 2.3.2 Deciphering the Language of Cells 2.3.3 Compiling DNAStrings Programs 2.3.4 Executing Code from DNAStrings 2.4 Further Nuances in DNAStrings 2.5 Proteins: Cellular Machines 2.5.1 Proteins as Molecules 2.5.2 Proteins as Engineered Machines 2.6 Data Maintenance and Integrity Tasks 2.6.1 Backing up DNA Data 2.6.2 The Challenges of Data Management Key Terms Bibliography Chapter 3 Wet and Dry Lab Techniques 3.1 Hybridization: Putting Base Pairs to Work 3.2 Making Copies of Nucleotide Sequences 3.3 An Explosion of Copies 3.4 Sequencing DNA Strings 3.5 The Human Genome Project: Computing to the Rescue 3.5.1 Mission Impossible: Sequencing the Human Genome 3.6 Human Genome Sequencing Strategies 3.7 From Structure to Function 3.8 Profiling the Transcriptome 3.9 A Few Proteomics Techniques 3.10 Putting It All Together 3.11 A Few Selected Dry Lab Techniques 3.11.1 Algorithms 3.11.2 Analysis Key Terms Bibliography Chapter 4 Fragment Assembly 4.1 The Nature of the Problem 4.1.1 Two Analogies 4.1.2 The Need for Multiple Coverage 4.2 Putting the Pieces Together 4.2.1 Location, Location, Location 4.2.2 Mapping 4.2.3 Using Overlaps 4.2.4 Whole-Genome Sequencing 4.2.5 The Problem of Repeats 4.2.6 A Worked Example 4.3 The Size of the Problem 4.4 A Purely Combinatorial Problem 4.4.1 Problem Statement 4.5 Solving the Combinatorial Problem 4.5.1 Overlaps 4.5.2 FragmentsWithin Fragments 4.5.3 A Graph Model 4.5.4 A Nonoptimal Greedy Algorithm 4.5.5 Improving on Greed 4.6 Biological Sequence Reassembly 4.7 Sequencing by Hybridization 4.7.1 A Worked Example 4.8 Exercises for Chapter 4 Key Terms Bibliography Chapter 5 Sequence Alignment 5.1 Exact Pattern Matching 5.1.1 The Naïve Algorithm 5.1.2 Algorithm Analysis 5.1.3 Other Pattern-Matching Algorithms 5.1.4 DFAs for Search 5.1.5 DFAs as Programs 5.1.6 Suffix Trees 5.1.7 A Worked Example: abracadabara 5.1.8 Recap of Exact Pattern Matching 5.2 Things People Do Well: Similarity Detection 5.3 Computers Helping People: Presenting DotPlots 5.3.1 Straight DotPlot: Searching for Areas of Exact Matching 5.3.2 A Worked Example: Can You Dance the Can-Can? 5.3.3 Controlling Sensitivity and Selectivity 5.4 People Helping Computers: Algorithms 5.4.1 Alignment 5.4.2 Quality of Alignments: Scoring Schemes 5.4.3 Global Alignments: The Needleman–Wunsch Algorithms 5.4.4 A Worked Example 5.4.5 Local Alignments: The Smith–Waterman Algorithm 5.4.6 A Worked Example 5.5 Affine Gap Penalties 5.6 Evolutionary Considerations 5.6.1 PAM and BLOSUM 5.7 Space/Time Analysis of Dynamic Programming Algorithms 5.8 Heuristic Approaches: Fast A and BLAST 5.8.1 A Worked Example: Bill Gates at Ballgames 5.9 Multiple Alignments 5.9.1 A Worked Example 5.9.2 Analysis of Multiple-Alignment Algorithms 5.10 Exercises for Chapter 5 Key Terms Bibliography Chapter 6 Simulating and Modeling Evolution 6.1 The Biological Time Machine 6.1.1 Evolutionary Processes 6.2 E. coli Evolution 6.3 Simulating Evolution in Silico 6.3.1 Genetic Algorithms: A First Pass 6.3.2 Monkey Shakespeare: An Extended Example 6.3.3 Monkey Evolution: Making Whales from Weasels 6.3.4 A Worked Example: A Genetic Algorithm for Gene Finding 6.4 Modeling Evolutionary Relationships 6.4.1 Models of Mutation 6.5 Discovering Evolutionary Relationships 6.5.1 Parsimony 6.5.2 Other Ways to Build Trees 6.5.3 Maximum Likelihood Key Terms Bibliography Chapter 7 Gene Finding 7.1 A Modern Cryptographic Puzzle 7.1.1 Detecting Encryption 7.1.2 Encoding Information 7.2 Cracking the Genome: A First Pass 7.2.1 A Worked Example: HIV Integration Sites 7.2.2 Regulating Genes: Transcription Factor-Binding Sites 7.3 A Biological Decoder Ring 7.3.1 A First Try at Decryption: ORF Finding 7.3.2 Accounting for Discontinuous Coding Regions 7.4 Finding Genes Through Mathematics 7.4.1 Linguistic Complexity 7.4.2 Looks Like a 7.4.3 Markov Models 7.4.4 Genes as Markov Processes Key Terms Bibliography 7.5 Gene Finding by Learning: Letting a Computer Do It 7.6 Exercises for Chapter 7 Chapter 8 Gene Expression 8.1 Introduction 8.2 Genes in Context 8.3 Genotype to Phenotype 8.4 The Expected (by now) Complications of Biology 8.5 A Flood of Data 8.6 Noisy Data 8.6.1 Turning down the Noise 8.7 The Many Modes of Gene Expression Data 8.8 A Worked Example: Gene Expression in HIV-Infected Cells 8.8.1 Data Preprocessing 8.9 Programs to Work with Genes and Expression Vectors 8.10 Mining the Gene Expression Data 8.10.1 A Worked Example: Looking for Differentially Expressed Genes 8.10.2 Testing Biological Hypotheses with Statistical Hypotheses 8.11 A Worked Example: Forming New Hypotheses 8.11.1 Organizing the Data 8.11.2 Clustering 8.11.3 Classification 8.11.4 Using Visualization Techniques to Aid Interpretation 8.11.5 Advanced Classification Algorithms 8.12 Data Management 8.12.1 Controlled Vocabularies and Standardization of Microarray Data 8.13 Exercises for Chapter 8 Key Terms Bibliography Chapter 9 Projects 9.1 Visualization and Exploration of Complex Datasets 9.1.1 Sequencing Gel Visualization 9.1.2 Microarray Data Visualization 9.1.3 Data Visualization Tools 9.1.4 Over to You 9.1.5 Resources for Visualization 9.2 RNA Structure and Function Prediction 9.2.1 Solving Structures for Functional RNAs: Early Successes 9.2.2 Structural RNAs and Gene Regulation 9.2.3 RNA Structures in Machines: Solving Complex Structures 9.2.4 Over to You 9.2.5 Resources for Structure Prediction 9.3 Rational Drug Design Through Protein Structure and Function Prediction 9.3.1 A Pharmaceutical Fairy Tale 9.3.2 Drug Development: One in a Million Chances 9.3.3 Structure-Based Drug Design 9.3.4 A Pharmaceutical Cautionary Tale 9.3.5 Over to You 9.3.6 Resources for Rational Drug Design 9.4 Information-Based Medicine 9.4.1 Identifying Simple Disease Genes 9.4.2 The Challenge of Mapping Complex Diseases 9.4.3 Over to You 9.4.4 Resources for Information-Based Medicine 9.5 Systems Biology 9.5.1 Introduction 9.5.2 Inputs 9.5.3 Outputs 9.5.4 Modern Approach to Systems Biology 9.5.5 Feedback, Equilibrium, and Attractors 9.5.6 What Kind of Model? 9.5.7 Over to You 9.5.8 Resources for Systems Biology Key Terms Bibliography Index