دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: K. Ramesh Reddy, Ronald D. DeLaune, Patrick W. Inglett سری: ISBN (شابک) : 149876455X, 9781498764551 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 712 [734] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 25 Mb
در صورت تبدیل فایل کتاب Biogeochemistry of Wetlands: Science and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بیوژئوشیمی تالاب ها: علم و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ماهیت مهم جهانی اکوسیستم های تالابی منجر به افزایش حفاظت و احیای آنها و همچنین استفاده از آنها در سیستم های مهندسی شده است. زیربنای عملکردهای مفید تالاب ها مجموعه ای منحصر به فرد از فرآیندهای فیزیکی، شیمیایی و بیولوژیکی است که چرخه عنصری را در خاک و ستون آب تنظیم می کند. این کتاب پوشش عمیقی از این فرآیندهای بیوژئوشیمیایی تالاب مربوط به چرخه عناصر درشت از جمله کربن، نیتروژن، فسفر و گوگرد، عناصر ثانویه و کمیاب و ترکیبات آلی سمی ارائه میدهد.
در این سنتز، نویسندگان بیش از 100 سال تجربه در مطالعه تالابها و بیوژئوشیمی را ترکیب میکنند تا به درون جعبه سیاه تحولات عنصری در اکوسیستمهای تالاب نگاه کنند. این نسخه جدید در سراسر به روز شده است تا موضوعات بیشتری را شامل شود و یک نمای یکپارچه از ماهیت همراه چرخه های بیوژئوشیمیایی در سیستم های تالاب ارائه دهد. تأثیر چرخه های عنصری در طیف وسیعی از مقیاس ها در زمینه تغییرات محیطی از جمله آب و هوا، افزایش سطح دریا و کیفیت آب مورد بحث قرار می گیرد. نمونههای متداول روشهای کلیدی و مطالعات موردی اصلی نیز گنجانده شدهاند تا به خواننده کمک کند نظریههای اساسی را برای کاربرد در سیستم خود گسترش دهد. برخی از موضوعات عمده مورد بحث عبارتند از:
این کتاب پایه و اساس یک پایه درک فرآیندهای کلیدی بیوژئوشیمیایی و کاربردهای آن برای حل مسائل دنیای واقعی این جزئیات دقیق است، اما همچنین با درج جعبه، نمودارهای هنرمندانه طراحی شده، و جداول خلاصه که همه توسط منابع متعدد فعلی پشتیبانی می شوند، به خواننده کمک می کند. این کتاب یک منبع عالی برای دانشجویان ارشد و دانشجویان کارشناسی ارشد است که در حال مطالعه بیوژئوشیمی اکوسیستم با تمرکز بر تالاب ها و سیستم های آبی است.
The globally important nature of wetland ecosystems has led to their increased protection and restoration as well as their use in engineered systems. Underpinning the beneficial functions of wetlands are a unique suite of physical, chemical, and biological processes that regulate elemental cycling in soils and the water column. This book provides an in-depth coverage of these wetland biogeochemical processes related to the cycling of macroelements including carbon, nitrogen, phosphorus, and sulfur, secondary and trace elements, and toxic organic compounds.
In this synthesis, the authors combine more than 100 years of experience studying wetlands and biogeochemistry to look inside the black box of elemental transformations in wetland ecosystems. This new edition is updated throughout to include more topics and provide an integrated view of the coupled nature of biogeochemical cycles in wetland systems. The influence of the elemental cycles is discussed at a range of scales in the context of environmental change including climate, sea level rise, and water quality. Frequent examples of key methods and major case studies are also included to help the reader extend the basic theories for application in their own system. Some of the major topics discussed are:
The book provides the foundation for a basic understanding of key biogeochemical processes and its applications to solve real world problems. It is detailed, but also assists the reader with box inserts, artfully designed diagrams, and summary tables all supported by numerous current references. This book is an excellent resource for senior undergraduates and graduate students studying ecosystem biogeochemistry with a focus in wetlands and aquatic systems.
Cover Half Title Title Copyright Contents Preface Acknowledgments Authors Chapter 1 Introduction Chapter 2 Basic Concepts and Terminology 2.1 Introduction 2.2 Chemistry 2.2.1 Aqueous Chemistry 2.2.1.1 Concentration Units 2.2.2 Acids and Bases 2.2.3 Equilibrium Constant 2.2.4 Thermodynamics 2.2.4.1 Influence of pH 2.2.5 Oxidation–Reduction Reactions 2.2.5.1 Oxidation–Reduction 2.2.5.2 Oxidation State or Number 2.2.6 Balancing Oxidation–Reduction Reactions 2.3 Biology 2.3.1 Microbial Cell 2.3.2 Microbial Classification 2.3.3 Chemistry of Biological Molecules 2.3.4 Metabolic Reactions 2.3.5 Enzymes 2.3.6 Biochemical Kinetics 2.4 Isotopes 2.4.1 Radioactive Isotopes and Decay 2.4.2 HalfLife 2.4.3 Stable Isotopes 2.5 Terminology in Soil Science 2.5.1 Master Soil Horizon 2.5.2 Properties Used in Soil Description 2.5.3 Soil Taxonomy 2.5.4 Physical Properties 2.5.5 Chemical Properties 2.6 Units Study Questions Further Readings Chapter 3 Biogeochemical Characteristics 3.1 Introduction 3.2 Types of Wetlands 3.2.1 Coastal Wetlands 3.2.2 Inland Wetlands 3.3 Wetland Hydrology 3.4 Wetland Soils 3.4.1 Physical Characteristics 3.4.2 Biochemical Characteristics 3.4.3 Biological Characteristics 3.5 Wetland Vegetation 3.6 Biogeochemical Features of Wetlands 3.6.1 Presence of Molecular Oxygen in Restricted Zones 3.6.2 Sequential Reduction of Other Inorganic Electron Acceptors 3.6.3 Aerobic Soil–Floodwater Interface 3.6.4 Exchanges at the Soil–Water Interface 3.6.5 Presence of Hydrophytic Vegetation 3.7 Types of Wetland/Hydric Soils 3.7.1 Waterlogged Mineral Soils 3.7.2 Organic Soils (Histosols) 3.7.3 Marsh Soils 3.7.4 Paddy Soils 3.7.5 Subaqueous Soils 3.7.6 Hydric Soils 3.8 Summary Study Questions Further Readings Chapter 4 Electrochemical Properties 4.1 Introduction 4.2 Theoretical Relationships 4.2.1 E° vs. log K 4.2.2 pe vs. Eh 4.3 Measurement of Eh 4.4 Eh–pH Relationships 4.5 Buffering of Redox Potential (Poise) 4.6 Measurement of Redox Potentials 4.6.1 Construction of Platinum Electrodes 4.6.2 Standardization of Electrodes 4.6.3 Redox Potentials in Soils 4.7 pH 4.7.1 Soil pH 4.7.2 Floodwater pH 4.7.3 pH Effects 4.8 Redox Couples in Wetlands 4.8.1 Intensity 4.8.2 Capacity 4.9 Redox Gradients in Soils 4.10 Specific Conductance 4.11 Summary Study Questions Further Readings Chapter 5 Carbon 5.1 Introduction 5.2 Major Components of the Carbon Cycle in Wetlands 5.2.1 Plant Biomass Carbon (Net Primary Productivity) 5.2.2 Particulate Organic Matter (Detrital and Soil) 5.2.3 Microbial Biomass Carbon 5.2.4 Dissolved Organic Matter 5.2.5 Gaseous Forms of Carbon 5.3 Organic Matter Accumulation 5.4 Characteristics of Detritus and Soil Organic Matter 5.4.1 NonHumic Substances 5.4.1.1 Carbohydrates 5.4.2 Phenolic Substances 5.4.3 Humic Substances 5.5 Decomposition 5.5.1 Leaching and Fragmentation 5.5.2 Photolysis 5.5.3 Extracellular Enzyme Hydrolysis 5.5.4 Catabolic Activity 5.5.4.1 Aerobic Catabolism 5.5.4.2 Anaerobic Catabolism 5.5.4.3 Aerobic vs. Anaerobic Catabolism 5.6 Organic Matter Turnover 5.6.1 Decomposition Rates 5.7 Regulators of Organic Matter Decomposition 5.7.1 Quality and Quantity of Organic Matter 5.7.2 Microbial Communities and Biomass 5.7.3 Water Table or Soil Aeration Status 5.7.4 Availability of Electron Acceptors with Higher Reduction Potentials 5.7.5 Nutrient Availability 5.7.6 Temperature 5.8 Environmental and Ecological Significance 5.9 Functions of Organic Matter in Soils 5.10 Summary Study Questions Further Readings Chapter 6 Oxygen 6.1 Introduction 6.2 Soil Gases 6.3 Oxygen–H2O Redox Couple 6.3.1 Oxygen Diffusion Rate 6.3.2 Soil Oxygen Content 6.4 Sources of Oxygen 6.5 AerobicAnaerobic Interfaces 6.6 Oxygen Consumption 6.6.1 Oxygen as a Reactant 6.6.2 Oxygen as an Electron Acceptor 6.7 Summary Study Questions Further Readings Chapter 7 Adaptation of Plants to Soil Anaerobiosis 7.1 Introduction 7.2 Distribution of Wetland Plants 7.3 Mechanisms of Flood Tolerance 7.3.1 Metabolic Adaptations 7.3.2 Morphological/Anatomical Adaptations 7.3.2.1 Roots 7.3.2.2 Pneumatophores 7.3.2.3 Lenticels 7.3.2.4 Intercellular Airspaces 7.3.3 Aerenchyma Formation 7.3.4 Intercellular Oxygen Concentration 7.4 Mechanisms of Oxygen Movement in Wetland Plants 7.4.1 Diffusion 7.4.2 Mass Flow 7.5 Oxygen Release by Plants 7.6 Measurement of Radial Oxygen Loss 7.7 Soil Phytotoxic Accumulation Effects on Plant Growth 7.7.1 Greenhouse Gas Emissions: Methane 7.7.2 Greenhouse Gas Emissions: Nitrous Oxide 7.8 Oxidizing Power of Plant Roots 7.8.1 Root Iron Plaque Formation 7.9 Effect of Intensity and Capacity of Soil Reduction on Wetland Plant Functions 7.9.1 Effect of Soil Reduction Intensity 7.9.2 Relationship of Reduction Intensity with Root Porosity and Radial Oxygen Loss 7.9.3 Effect of Soil Reduction Intensity on Nutrient Uptake 7.9.4 Soil Reduction Capacity Effects on Carbon Assimilation and Radial Oxygen Loss 7.10 Summary Study Questions Further Readings Chapter 8 Nitrogen 8.1 Introduction 8.2 Forms of Nitrogen 8.2.1 Inorganic Nitrogen 8.2.2 Organic Nitrogen 8.3 Major Storage Compartments 8.3.1 Plant Biomass Nitrogen 8.3.2 Particulate Organic Nitrogen 8.3.3 Microbial Biomass Nitrogen 8.3.4 Dissolved Organic Nitrogen 8.3.5 Inorganic Forms of Nitrogen 8.3.6 Gaseous Forms of Nitrogen 8.4 Redox Transformations of Nitrogen 8.5 Nitrogen Fixation 8.5.1 Regulators of Dinitrogen Fixation 8.5.2 Nitrogen Fixation Rates 8.6 Nitrogen Assimilation by Vegetation 8.7 Organic Nitrogen Accumulation 8.8 Mineralization of Organic Nitrogen 8.8.1 Chemical Composition of Organic Nitrogen 8.8.2 C:N Ratio Concept 8.8.3 Microbial Degradation of Organic Nitrogen 8.8.4 Regulators of Organic Nitrogen Mineralization 8.9 Ammonia Adsorption–Desorption 8.10 Ammonia Fixation 8.11 Ammonia Volatilization 8.11.1 Physicochemical Reaction 8.11.2 Regulators of Ammonia Volatilization 8.12 Aerobic Ammonia Oxidation 8.12.1 Chemoautotrophic Prokaryotes 8.12.2 MethaneOxidizing Bacteria 8.12.3 Heterotrophic Bacteria and Fungi 8.12.4 Regulators of Ammonium Oxidation 8.13 Anaerobic Ammonium Oxidation 8.13.1 Other Processes of Anaerobic Ammonium Oxidation 8.14 Nitrate Reduction 8.14.1 Denitrification 8.14.2 Nitrifier Denitrification 8.14.3 Aerobic Denitrification 8.14.4 Chemodenitrification 8.14.5 Dissimilatory Nitrate Reduction to Ammonia 8.14.6 Regulators of Nitrate Reduction 8.14.7 Nitrate Reduction Rates in Wetlands and Aquatic Systems 8.15 Nitrogen Processing by Wetlands 8.15.1 Ammonium Flux 8.15.2 Nitrate Flux 8.16 Environmental and Ecological Significance 8.17 Summary Study Questions Further Readings Chapter 9 Phosphorus 9.1 Introduction 9.2 Phosphorus Accumulation in Soils 9.2.1 Why Does Phosphorus Added to Wetlands Accumulate in Soils? 9.3 Phosphorus Forms in the Water Column and Soil 9.3.1 Phosphorus Speciation 9.3.2 Water Column 9.3.2 Soil 9.4 Inorganic Phosphorus 9.5 Phosphorus Sorption by Soils 9.5.1 Adsorption–Desorption 9.5.1.1 Isotherm Concepts 9.5.2 Phosphorus Sorption Isotherms 9.5.2.1 Linear Equation 9.5.2.2 Freundlich Equation 9.5.2.3 Langmuir Equation 9.5.2.4 SinglePoint Isotherm 9.5.2.5 Quantity (Q)/Intensity (I) Relationships 9.5.3 Precipitation and Dissolution 9.5.4 Regulators of Phosphorus Retention and Release 9.6 Organic Phosphorus 9.6.1 Forms of Organic Phosphorus 9.6.2 Chemical Characterization of Organic Phosphorus 9.7 Phosphorus Uptake and Storage in Biotic Communities 9.7.1 Microorganisms 9.7.2 Periphyton 9.7.3 Vegetation 9.8 Mineralization of Organic Phosphorus 9.8.1 Abiotic Degradation and Stabilization of Organic Phosphorus 9.8.1.1 Leaching of Soluble Organic Phosphorus 9.8.1.2 Noncatalyzed Hydrolysis of Phosphate Esters 9.8.1.3 Photolysis 9.8.1.4 Stabilization of Organic Phosphorus 9.8.2 Enzymatic Hydrolysis of Organic Phosphorus 9.8.2.1 Phosphatases or Monoesterases 9.8.2.2 Phosphodiesterases 9.8.3 Microbial Activities and Phosphorus Release 9.8.4 Regulators of Organic Phosphorus Mineralization 9.9 Biotic and Abiotic Interactions on Phosphorus Mobilization 9.9.1 Phosphorus–Iron–Sulfur Interactions 9.9.2 Periphyton–Phosphate Interactions 9.9.3 Biotic and Abiotic Interactions of Fe and Ca with Phosphorus 9.9.4 Gaseous Loss of Phosphorus 9.10 Phosphorus Exchange between Soil and Overlying Water Column 9.11 Phosphorus Memory by Soils and Sediments 9.12 Summary Study Questions Further Readings Chapter 10 Iron and Manganese 10.1 Introduction 10.2 Storage and Distribution 10.3 Eh–pH Relationships 10.3.1 Iron 10.3.2 Manganese 10.4 Reduction of Iron and Manganese 10.4.1 Microbial Communities 10.4.2 Biotic and Abiotic Reduction 10.4.2.1 Biotic Reduction 10.4.2.2 Abiotic Reduction 10.4.3 Forms of Iron and Manganese 10.4.3.1 Iron 10.4.3.2 Manganese 10.4.3.3 Complexation of Iron and Manganese with Dissolved Organic Matter 10.4.3.4 Mobile and Immobile Pools of Iron and Manganese 10.5 Oxidation of Iron and Manganese 10.5.1 Microbial Communities 10.5.2 Biotic and Abiotic Oxidation 10.5.2.1 Iron 10.5.2.2 Manganese 10.6 Mobility of Iron and Manganese 10.7 Ecological Significance 10.7.1 Nutrient Regeneration/Immobilization 10.7.1.1 Organic Matter Decomposition and Nutrient Release 10.7.1.2 Phosphorus Release or Retention 10.7.1.3 Coprecipitation of Trace Elements with Iron and Manganese Oxides 10.7.1.4 Siderophores and Complexation of Iron and Manganese Oxides 10.7.2 Ferromanganese Nodules 10.7.3 Root Plaque Formation 10.7.4 Wetting and Drying: Hydrologic Fluctuations 10.7.5 Ferrolysis 10.7.6 Methane Emissions 10.8 Summary Study Questions Further Readings Chapter 11 Sulfur 11.1 Introduction 11.2 Major Storage Compartments 11.3 Forms of Sulfur 11.4 Oxidation–Reduction of Sulfur 11.5 Assimilatory Sulfate and Elemental Sulfur Reduction 11.6 Mineralization of Organic Sulfur 11.7 Electron Acceptor–Reduction of Inorganic Sulfur 11.7.1 Dissimilatory Sulfate Reduction 11.7.2 Role of Sulfur in Energy Flow 11.7.3 Measurement of Sulfate Reduction in Wetland Soils 11.7.4 Regulators of Sulfate Reductions 11.8 Sulfide Toxicity 11.9 Electron Donor–Oxidation of Sulfur Compounds 11.10 Biogenic Emission of Reduced Sulfur Gases 11.11 Sulfur–Metal Interactions 11.12 Exchange between Soil and Water Column 11.13 Sulfur Sinks 11.14 Environmental and Ecological Significance 11.15 Summary Study Questions Further Readings Chapter 12 Metals/Metalloids 12.1 Introduction 12.2 Biogeochemical Regulators of Metal Availability and Transformation 12.2.1 Sorption and Precipitation 12.2.2 Interaction with Organic Matter 12.2.3 Interaction with Clay Minerals 12.2.4 Biotic Transformations 12.2.5 Redox Potential and pH of Soils and Sediments 12.3 Mercury–Methyl Mercury 12.4 Arsenic 12.5 Copper 12.6 Zinc 12.7 Selenium 12.8 Chromium 12.9 Cadmium 12.10 Lead 12.11 Nickel 12.12 Summary Study Questions Further Readings Chapter 13 Toxic Organic Compounds 13.1 Introduction 13.2 Abiotic Pathways 13.2.1 Redox Potential–pH 13.2.2 Hydrolysis 13.2.3 Sorption to Suspended Solids and the Substrate Bed 13.2.3.1 Effect of Colloidal Organic Matter in Surface Water on Sorption in Wetlands 13.2.4 Photolysis 13.3 Biotic Pathways 13.3.1 Acclimation 13.3.2 Biodegradation 13.3.3 Cometabolism 13.3.4 Microbial Accumulation 13.3.5 Polymerization and Conjugation 13.4 Metabolism of Organic Compounds 13.4.1 Hydrolysis 13.4.2 Oxidation 13.4.2.1 Hydroxylation 13.4.2.2 Dealkylation 13.4.2.3 βOxidation 13.4.2.4 Decarboxylation 13.4.2.5 Cleavage of Ether Linkage 13.4.2.6 Epoxidation 13.4.2.7 Oxidative Coupling 13.4.2.8 Aromatic Ring Cleavage 13.4.2.9 Heterocyclic Ring Cleavage 13.4.2.10 Sulfoxidation 13.5.3 Reduction 13.4.3.1 Reductive Dehalogenation 13.4.4 Synthesis 13.5 Plant and Microbial Uptake 13.6 Transport Processes 13.6.1 Exchange between Soil and Water Column 13.6.2 Settling and Burial of Particulate Contaminants 13.6.3 Volatilization 13.6.4 Runoff and Leaching 13.7 Regulators 13.7.1 Effect of Electron Acceptors on Toxic Organic Degradation 13.7.2 Bacterial Groups 13.7.3 Effect of Soil Redox–pH Conditions on Degradation 13.7.4 Burial 13.8 Summary Study Questions Further Readings Chapter 14 Soil and Floodwater Exchange Processes 14.1 Introduction 14.2 Advective Flux 14.2.1 Advective Flux Processes 14.2.2 Measurement of Advective Flux 14.2.2.1 Seepage Meters 14.2.2.2 Piezometer 14.2.2.3 Salinity/Conductivity 14.2.2.4 Radium/Radon Isotopes 14.2.2.5 Dyes 14.3 Diffusive Flux 14.3.1 Diffusive Flux Processes 14.4 Bioturbation 14.4.1 Macrobenthos Communities 14.4.2 Benthic Invertebrates and Sediment–Water Interactions 14.5 Wind Mixing and Resuspension 14.6 Exchange of Dissolved Solutes Between Soil/Sediment and the Water Column 14.6.1 GradientBased Measurements 14.6.2 Overlying Water Incubations 14.6.2.1 Benthic Chambers 14.6.2.2 Intact Core Flux 14.7 Sediment Transport Processes 14.7.1 Sediment/Organic Matter Accretion in Wetlands 14.7.2 Measurement of Sedimentation or Accretion Rates 14.7.2.1 Filter Pad Traps 14.7.2.2 Artificial Marker Horizons 14.7.2.3 Sedimentation–Erosion Table 14.7.2.4 Beryllium7 Dating 14.7.2.5 Lead210 Dating 14.7.2.6 Cesium137 Dating 14.7.2.7 Carbon14 Dating 14.7.2.8 Application of Sediment Dating 14.8 Vegetative Flux/Detrital Export 14.9 Air–Water Exchange 14.10 Biogeochemical Regulation of Exchange Processes 14.11 Summary Study Questions Further Readings Chapter 15 Coupled Biogeochemical Cycles: An Integrative Approach 15.1 Introduction 15.2 Biotic Communities and Interactions 15.2.1 Microbial Communities 15.2.2 Periphyton 15.2.3 Vegetation 15.3 Coupled Biogeochemical Processes 15.3.1 Carbon 15.3.2 Nitrogen 15.3.3 Phosphorus 15.3.4 Sulfur 15.4 Ecological and Environmental Significance 15.4.1 Wetlands and Climate Change 15.4.2 Wetlands and Sea Level Rise 15.4.3 Wetlands and Water Quality 15.5 Summary 15.6 Future Directions and Perspectives References Index