دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Mansour Ghorbanpour (editor), Prachi Bhargava (editor), Ajit Varma (editor), Devendra K. Choudhary (editor) سری: ISBN (شابک) : 9811529841, 9789811529849 ناشر: Springer سال نشر: 2020 تعداد صفحات: 610 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Biogenic Nano-Particles and their Use in Agro-ecosystems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانو ذرات بیوژنیک و کاربرد آنها در اکوسیستم های کشاورزی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Editors and Contributors About the Editors Contributors 1: Application of Nanotechnology in Agricultural Farm Animals 1.1 Introduction 1.2 Improvement in Animal Health 1.2.1 Veterinary Diagnostics 1.2.2 Veterinary Therapeutics and Vaccine Delivery 1.3 Improvement in Animal Production 1.3.1 Nanofeed 1.3.2 Nano-Reproduction 1.4 Conclusion References 2: Nanoparticles in Plant Growth and Development 2.1 Introduction 2.2 Molecular Mechanism of Nanoparticles in Plant Growth and Protection 2.2.1 Mode of Entry and Uptake 2.2.2 Nanoparticle-Plant Interactions 2.2.3 Translocation 2.3 Effect of Nanoparticles 2.3.1 Effect on Photosynthesis 2.3.2 Effect on Seed Germination 2.3.3 Root and Shoot Growth 2.3.4 Effect on Nutrient Delivery 2.3.5 Effect on Rhizospheric Environment 2.3.6 Toxicity 2.3.6.1 Pathogen Suppression 2.3.6.2 Regulated Delivery of Pesticides 2.3.6.3 Physiological and Biochemical Changes in Plants 2.3.7 Accumulation of Nanoparticles 2.3.7.1 In Plants 2.3.7.2 In Soil and Water Bodies References 3: Use of Nanotechnology in Quality Improvement of Economically Important Agricultural Crops 3.1 Introduction 3.2 Nanoparticles in Agriculture and Their Fabrication 3.3 Polymers Used as Nanocarriers 3.4 Nanoparticles for Seed Germination and Plant Growth 3.5 Nanofertilizers 3.6 Classification of Nanofertilizers 3.7 Benefits of Nanofertilizers 3.8 Advantages of Nanofertilizers 3.9 Nanoherbicides 3.10 Advantages of Nanoherbicides 3.11 Nanopesticides 3.12 Advantages of Nanopesticides 3.13 Nanosensors and Their Applications 3.14 Classification of Nanosensors 3.15 Advantages of Nanosensors 3.16 Nanotechnology for Post-harvest Improvement 3.17 Microbial Nanoformulations in Quality Enhancement 3.18 Nanopackaging Technology References 4: Agriculture and Nanoparticles 4.1 Introduction 4.2 Effects of Nanoparticles on Plant Development 4.3 Conclusion References 5: Large-Scale Production/Biosynthesis of Biogenic Nanoparticles 5.1 Introduction 5.2 Detoxification Principles 5.3 Biosynthesis of Biogenic Nanoparticles 5.4 Industrial-Scale Production/Biosynthesis of Biogenic Nanoparticles 5.5 Process Scale-Up Principles References 6: Role of Nanotechnology in the Management of Agricultural Pests 6.1 Introduction 6.2 Methods for the Management of Insects/Pests 6.3 Nanoparticles as a New Tool for Pest Management 6.4 Role of Naturally Occurring Nanoparticles in Insects 6.5 Nanoparticles Used in Biopesticides Controlled Release Formulations 6.6 Classes of Nanoparticles 6.7 Nanopesticides 6.8 Methods to Develop Nanoparticles for Pest Control 6.9 Mechanisms of Action of Nanoparticles 6.10 Conclusion: Nanotechnology Risks and Regulation References 7: Biogenic Nanomaterials: Synthesis and Its Applications for Sustainable Development 7.1 Introduction 7.2 Nanoparticles and Its Classification 7.3 Different Methods of Synthesis of NPs 7.3.1 Green Chemistry in Fabrication of Nanomaterials/Nanostructures 7.3.1.1 Biogenic NPs 7.3.1.1.1 Microbial Synthesis of Nanoparticles 7.3.1.2 Bacteria-Based NP Synthesis 7.3.1.3 Fungi-Based NP Synthesis 7.3.1.4 Algae-Based NP Synthesis 7.3.1.5 Yeast-Based NP Synthesis 7.3.1.6 Plant-Based NP Synthesis 7.3.1.7 Biological Particle-Based NP Synthesis 7.3.1.8 Biodegradable Waste-Based NP Synthesis 7.4 Factors that Impact the Synthesis of Nanoparticles 7.4.1 Impact of pH 7.4.2 Impact of Temperature 7.4.3 Impact of Plant Extract Concentration 7.4.4 Impact of Metal Ion Concentration 7.4.5 Impact of Reaction Time 7.4.6 Capping Agents 7.4.6.1 Green Capping Agents 7.4.6.2 Polysaccharides 7.4.6.3 Carboxymethyl Cellulose (CMC) 7.4.6.4 Polyethylene Glycol (PEG) 7.5 Applications 7.5.1 Agriculture 7.5.1.1 Significance of Nanotechnology in Pest Management 7.5.1.2 Stress Reduction 7.5.1.2.1 Application of Silicon Nanoparticles to Eradicate Drought and Salinity Stress in Plants 7.5.1.2.2 Application of Si Nanoparticles to Eradicate Disease in Plants 7.5.2 Wastewater Treatment 7.5.2.1 Biogenic NPs for Heavy Metal Removal 7.5.2.2 Organic Pollutant Removal 7.5.2.3 Radioactive and Inorganic Pollutants Removal 7.5.2.4 Metallic and Nonorganic Pollutant Removal 7.5.2.5 Pharmaceutical Pollutant Removal 7.5.3 Growth Promotion 7.5.4 Present Challenges in Agriculture and Nanotechnology-Based Solutions 7.6 Conclusion References 8: An Overview on the Effect of Soil Physicochemical Properties on the Immobilization of Biogenic Nanoparticles 8.1 Introduction 8.2 Synthesis of Biogenic Nanoparticles 8.3 Applications of Biogenic Synthesis of NPs 8.4 Biogenic Nanoparticles in Soils 8.5 Effect of Soil Physicochemical Properties on Immobilization of Biogenic Nanoparticles 8.6 Influence of Soil Properties on the Toxicity of Nanoparticles 8.7 Toxicity of Nanoparticles in Soil 8.8 Conclusion and Future Research References 9: Biogenic Nanoparticles as Novel Sustainable Approach for Plant Protection 9.1 Introduction 9.2 Biogenic Nanoparticle 9.3 Nanoparticle and Pathogen Control 9.4 Conclusions References 10: Biogenic Nanoparticles in the Insect World: Challenges and Constraints 10.1 Introduction 10.2 Biogenic Nanoparticles and Insects 10.3 Engineering Biogenic Nanoparticle in Control of Insects 10.3.1 Mode of Action of Nanoparticles Against Insect Pests 10.4 Conclusions References 11: Biogenic Synthesis of Gold Nanoparticles and Their Potential Application in Agriculture 11.1 Introduction 11.2 Biosynthesis of Nanoparticles 11.2.1 Synthesis of Gold Nanoparticles Using Plant 11.2.1.1 Plant Biomass 11.2.1.2 Plant Extracts 11.2.2 Synthesis of Gold Nanoparticles Using Bacteria 11.2.3 Synthesis of Gold Nanoparticles Using Actinomycetes, Algae and Yeast 11.2.4 Synthesis of Gold Nanoparticles Using Fungi 11.3 Characterization of Gold Nanoparticles 11.4 Applications of Gold Nanoparticles in Agriculture 11.5 Conclusions References 12: Application of Biogenic and Non-biogenic Synthesized Metal Nanoparticles on Longevity of Agricultural Crops 12.1 Introduction 12.2 Application of Biological (Biogenic/Green) Synthesized Nanoparticles to Improve Longevity of Agricultural Crops During Postharvest References 13: Nanoparticles and Their Fate in Soil Ecosystem 13.1 Synthesis of Nanoparticles 13.1.1 Chemical Methods of NP Synthesis 13.1.1.1 Chemical Reduction Method 13.1.1.2 Electrochemical Method 13.1.1.3 Solvothermal Decomposition 13.1.1.4 Microemulsion/Colloidal Method 13.1.1.5 Sonochemical Method 13.1.1.6 Microwave Method 13.1.2 Biological Methods of NP Synthesis 13.1.2.1 Phytosynthesis of Nanoparticles 13.1.3 Microbial Synthesis of Nanoparticles 13.2 Fate of Nanoparticles in Soil 13.2.1 Effect of Nanoparticles and Materials on Plants 13.2.1.1 Suppressive Effects on Plants 13.2.1.2 Promontory Effects on Plants 13.2.2 Effect of Nanoparticles on Microorganisms 13.2.2.1 Effects of Nanoparticles on Soil Microbial Community 13.2.2.2 NP Effects on Individual Microbes 13.2.2.2.1 Silver Nanoparticles 13.2.2.2.2 Zinc and Sulphur Nanoparticles 13.2.2.2.3 Copper and Silica Nanoparticles 13.3 Conclusion References 14: Impact of Nanoparticles on PGPR and Soil Nutrient Contents 14.1 Introduction 14.2 PGPR 14.2.1 Role of PGPR as a Plant Growth Enhancer 14.2.1.1 Direct Mechanism 14.2.1.2 Indirect Mechanism 14.3 Beneficial Aspects of PGPR 14.4 Disadvantages of PGPR 14.5 Nanotechnology in PGPR 14.5.1 Nanoparticles 14.5.1.1 Gold Nanoparticles 14.5.1.2 Silver Nanoparticles References 15: New Insights into Application of Nanoparticles for Plant Growth Promotion: Present and Future Prospects 15.1 Introduction 15.2 Nanofertilizers 15.2.1 Effects of Nanofertilizers on Seed Germination and Growth Parameters of the Plant 15.2.2 Effects of Foliar Application of Nanofertilizers 15.2.2.1 Advantages of Nanofertilizers 15.2.2.2 Controlled Release of Nanofertilizers and Nanocomplexes 15.3 Nanopesticides 15.4 Nanoparticles That Act as Carriers 15.4.1 Nanoparticles as Carriers for Insecticides 15.4.2 Nanoparticles as Carriers for Fungicides 15.4.3 Nanoparticles as Carriers for Herbicides 15.5 Pesticide Nanoformulations 15.6 Nanobiosensors and Agriculture 15.6.1 Pesticide Nanobiosensors 15.6.2 Nanobiosensors for Heavy Metal Detection 15.6.3 Nanofertilizer Nanobiosensors 15.7 Root Exudates (Metabolites) Nanosensors and Pathogen Detection 15.8 Nanosensors for Detection of Changes in Rhizosphere Microenvironment 15.8.1 Soil Oxygen Nanobiosensors 15.8.2 Soil Temperature/Moisture/pH Nanobiosensors 15.8.3 Sensors for Toxin Detection 15.9 Other Applications of Nanotechnology in the Field of Agriculture 15.10 Challenges and Opportunities 15.10.1 Regulatory Demands in Nanotechnology 15.10.2 Potential Consumer Safety Issues 15.11 Conclusion References 16: Nanomaterials: Emerging Trends and Future Prospects for Economical Agricultural System 16.1 Introduction 16.2 Nanotechnology in Agriculture 16.2.1 Plant Disease Suppression 16.2.2 Plant Growth and Germination 16.2.3 Nano-barcodes 16.2.4 Nanobiosensor 16.2.5 Agricultural Waste Management 16.2.6 Water Management 16.3 Agrochemical Applications 16.3.1 Nanopesticides 16.3.2 Nanofungicide 16.3.3 Nanobactericide 16.3.4 Nanoinsecticide 16.3.5 Nanoherbicides 16.3.6 Nanofertilizers 16.4 Targeted Genetic Engineering 16.5 Labeling and Imaging 16.6 Future Prospects References 17: Integrated Approach of Agri-nanotechnology: Recent Developments, Challenges and Future Trends 17.1 Introduction 17.2 Integrated Approach of Nanotechnology and Nanoinformatics in Agriculture 17.3 Precision Farming 17.4 Nanomaterials as Antimicrobial Agents for Plant Pathogens 17.5 Monitoring 17.6 Smart Delivery Systems 17.7 Minimizing Soil and Groundwater Pollution 17.8 Engineering of Crops 17.9 Smart Field Systems 17.10 Nanobarcodes and Nanoprocessing 17.11 Risk Factors and Future Considerations in the Field of Agri-nanotechnology 17.12 Conclusion References 18: Green-Nanotechnology for Precision and Sustainable Agriculture 18.1 Introduction 18.2 Green Nanotechnology 18.3 Nano-agrotechnology 18.3.1 Biosynthesis of Nanomaterials 18.3.1.1 Plant Based 18.3.1.2 Microbes Based 18.4 Applications of Nanotechnology in Precision Agriculture 18.4.1 Nano-fertilizer 18.4.2 Nanocides 18.4.3 Sensors 18.4.3.1 Pesticidal Residues Determination 18.4.3.2 Diagnosis of Plant Pathogens 18.4.4 Nano-barcodes 18.4.5 Soil Management 18.4.5.1 Soil Analysis 18.4.5.2 Water Retention/Absorption Holding Capacity 18.4.5.3 Soil Decontamination 18.4.5.3.1 Organic Contaminants’ Removal 18.4.5.3.2 Inorganic Contaminants’ Removal 18.4.6 Water Management 18.5 Conclusion References 19: Nanotechnology and Nutrigenomics 19.1 Introduction 19.2 Different Types of Nanotechnology 19.3 Biogenic Nanoparticles - The Green Nanoparticles 19.4 Synthesis of Biogenic Nanoparticles – The Factory Within 19.5 Nanotechnology for Delivery of Bioactives or Drugs 19.6 Advances in Nutrigenomics 19.7 Nanotechnology and Nutrigenomics – The Combined Perspective References 20: Recent Developments in Nanocarrier-Based Nutraceuticals for Therapeutic Purposes 20.1 Introduction 20.2 Classification of Nutraceuticals 20.3 Commercial Nutraceuticals 20.3.1 Nanocarriers 20.4 Classification of Nanocarriers 20.4.1 Polymeric Nanocarriers 20.4.1.1 Polymeric Micelles 20.4.1.2 Polymeric Hydrogels 20.4.1.3 Polymeric Conjugates 20.4.2 Lipid-Based Nanocarriers 20.4.2.1 Liposomes 20.4.2.2 Solid Lipid Nanoparticles 20.4.2.3 Nanoemulsions 20.4.2.4 Self-Assembled and Polymeric Nanocarriers 20.4.3 Inorganic Nanocarriers 20.4.3.1 Carbon Nanotubes 20.4.3.2 Other Inorganic Nanocarriers 20.4.4 Functional Therapeutic Nanoparticles (Hybrid Nanocarriers) 20.4.4.1 Plasmonic Nanoparticles 20.4.4.2 Chemotherapeutic Drugs Combination with Nutraceuticals Using Nanocarriers 20.5 Mechanism of Action 20.5.1 Typical Nanocarriers for Encapsulation 20.5.2 Factors Controlling Release from Nanocarriers 20.5.3 Basic Property of Pharmaceutical Nanocarriers: Longevity in the Blood 20.5.4 Nanoparticle Vehicles in Nutrient and Nutraceutical Delivery 20.6 Bioavailability Enhancement with Nanoparticles 20.7 Future Prospective and Challenges 20.8 Conclusion References 21: Current Status of Biologically Produced Nanoparticles in Agriculture 21.1 Conclusions References 22: A Missing Dilemma on Nanoparticle Producer Microorganisms 22.1 Introduction 22.2 Biological Synthesis of Nanoparticles by Microorganisms 22.3 Soil Property and Condition Affecting Nanoparticle Production 22.4 Efficiency of Biocontrol Agents Through Nanoparticle Production for Crop Protection 22.4.1 Nano-pesticides 22.4.2 Nanoparticles in Horticulture 22.5 Outlook 22.5.1 A Possible Induction of Bacterial and Fungal Resistance by NPs 22.6 Conclusion References 23: Detection and Degradation of Pesticides Using Nanomaterials 23.1 Introduction 23.1.1 Biodegradable Pesticides 23.2 Insecticides 23.2.1 Atrazine 23.2.2 Dichlorvos 23.2.3 Endosulfan 23.2.4 Parathion 23.2.5 Chlorpyrifos 23.2.6 Pirimicarb 23.2.7 Cyhalothrin 23.2.8 Carbaryl 23.3 Herbicides 23.3.1 2,4-Dichlorophenoxyacetic Acid 23.3.2 Clopyralid 23.3.3 Glyphosate 23.3.4 Paraquat 23.3.5 Mesotrione 23.4 Rodenticides 23.4.1 Warfarin 23.4.2 Bromadiolone 23.5 Bactericides 23.5.1 Bismerthiazol 23.6 Fungicides 23.6.1 Captan 23.6.2 Carbendazim 23.6.3 Mancozeb References 24: Use of Nanomaterials in Food Science 24.1 Introduction 24.2 Applications of Food Nanotechnology 24.2.1 Food Processing 24.2.1.1 Nanosensors 24.2.1.2 Interactive “Smart” Food Using Encapsulation 24.2.1.2.1 Association Colloids 24.2.1.2.2 Nanoemulsions 24.2.1.2.3 Biopolymeric Nanoparticles 24.2.1.2.4 Nanolaminates 24.2.1.2.5 Nanofibers and Nanotubes 24.2.1.3 Antimicrobial Properties 24.2.1.4 Protection Against Chemical Ingredients 24.2.1.4.1 Antioxidants 24.2.1.5 Enhancement of Physical Properties 24.2.1.5.1 Color Additives 24.2.1.5.2 Flavors 24.2.1.5.3 Anticaking Agents 24.2.2 Packaging and Food Safety 24.2.2.1 Active Packaging 24.2.2.2 Smart/Intelligent Packaging 24.2.2.3 Carbon Nanotubes 24.2.2.4 Biobased Packaging 24.2.2.4.1 Starch and Their Derivatives 24.2.2.4.2 Polylactic Acid (PLA) 24.2.2.4.3 Polyhydroxybutyrate (PHB) 24.2.2.4.4 Polycaprolactone (PCL) 24.2.3 Types of Nanomaterials in Food 24.2.3.1 Inorganic Nanoparticles 24.2.3.1.1 Silver Nanoparticles 24.2.3.1.2 Zinc and Zinc Oxide Nanoparticles 24.2.3.1.3 Titanium Dioxide Nanoparticles 24.2.3.1.4 Silicon Dioxide Nanoparticles 24.2.3.2 Organic Nanoparticles 24.2.3.2.1 Lipid Nanoparticles 24.2.3.2.2 Protein Nanoparticles 24.2.3.2.3 Carbohydrate Nanoparticles 24.2.3.2.4 Complex Nanoparticles 24.2.4 Role in Tracking, Tracing, Nanolithography, and Brand Protection 24.2.5 Implication and Safety Concerns 24.2.5.1 Size 24.2.5.2 Chemical Composition 24.2.5.3 Surface Structure 24.2.5.4 Solubility 24.2.5.5 Routes of Nanoparticle Exposure 24.3 Emerging Challenges and Potential Solutions References 25: Biogenic Nanomaterials and Their Applications in Agriculture 25.1 Introduction 25.2 Classification and Types of NPs 25.2.1 Carbon-Based NPs 25.2.2 Metal NPs 25.2.3 Ceramic NPs 25.2.4 Semiconductor NPs 25.2.5 Polymeric NPs 25.2.6 Lipid-Based NPs 25.3 Various Approaches in Nanoparticle Synthesis 25.3.1 Toxicology of Nanoparticles and Advantage of Biological Nanoparticles 25.3.2 Synthesis Mechanism of Nanoparticles 25.3.2.1 Top-Down Syntheses 25.3.2.2 Bottom-Up Syntheses 25.3.3 Biogenic or Green Synthesis Using Plants and Microorganisms 25.3.3.1 Plants 25.3.3.2 Nanoparticle Synthesis Using Microorganisms 25.3.3.2.1 Bacteria 25.3.3.2.2 Fungi 25.3.3.2.3 Actinomycetes 25.3.3.2.4 Algae 25.3.3.2.5 Viruses 25.4 Critical Parameters and Stabilization for the Biological Synthesis of Nanoparticles 25.4.1 Temperature 25.4.2 pH 25.5 Characterization of Nanoparticles 25.5.1 Morphological Characterizations 25.5.2 Structural Characterizations 25.5.3 Particle Size and Surface Area Characterization 25.5.4 Optical Characterizations 25.6 Applications of Nanoparticles in Agriculture 25.6.1 Nanomaterials as Nanofertilizers 25.6.1.1 Different Types of Nanofertilizers 25.6.1.1.1 Nitrogen Nanofertilizers 25.6.1.1.2 Potash Nanofertilizers 25.6.1.1.3 Zinc Nanofertilizers 25.6.1.1.4 Nanoporous Zeolites 25.6.2 Nanoherbicides 25.6.3 Nanopesticides 25.7 Environmental Toxicity of Nanoparticles 25.8 Conclusion References 26: Biosensors and Nanobiosensors in Environmental Applications 26.1 Introduction 26.2 Biosensors 26.2.1 Components of a Biosensor 26.2.2 Types of Biosensors 26.2.2.1 Enzyme-Based Biosensors 26.2.2.2 DNA-Based Biosensors 26.2.2.3 Immunosensors 26.2.2.4 Whole-Cell-Based Biosensors 26.2.2.5 Electrochemical Biosensors 26.2.2.6 Optical Biosensors 26.2.2.7 Mass Spectrometry Biosensors (Piezoelectric Biosensors) 26.2.2.8 Acoustic Biosensors 26.2.2.9 Thermal Biosensors 26.2.3 Biosensors Environmental Applications 26.2.3.1 Biosensors in Agriculture 26.2.3.2 Environmental Monitoring 26.2.3.3 Microbial Biosensors for Environmental Detection 26.2.3.3.1 In-site and Online Monitoring 26.2.3.3.2 Reporter Genes 26.2.3.3.3 Luminescent Bacteria and Fluorescence Microbial Biosensors 26.2.4 Advantages of Biosensors 26.3 Nanobiosensor 26.3.1 Constituents of Nanobiosensors 26.3.2 Types of Nanobiosensors 26.3.2.1 Mechanical Nanobiosensors 26.3.2.2 Optical Nanobiosensors 26.3.2.3 Nanowire Nanobiosensors 26.3.2.4 Electronic Nanobiosensors 26.3.2.5 Nanoshell Biosensors 26.3.3 Environmental Application of Nanobiosensors 26.3.3.1 Role of Nanobiosensors in Agriculture 26.3.3.1.1 As an Agent to Promote Sustainable Agriculture 26.3.3.1.2 Nanobiosensors for Seed Storage 26.3.3.1.3 Nanobiosensors for Fungal Plant Pathogen Detection 26.3.3.1.4 Nanobiosensors for Viral and Bacterial Plant Pathogen Detection 26.3.3.1.5 Nanobiosensors for Herbicide Detection 26.3.3.1.6 Nanobiosensors for Pesticide Detection 26.3.3.2 Environmental Monitoring 26.3.3.2.1 Nanobiosensors to Detect Contaminants in Soil 26.3.3.2.2 Nanobiosensors to Detect Heavy Metals in Soil and Water 26.3.3.2.3 Nanobiosensors for the Detection of Toxin, Pollution, and Pathogens in Water 26.4 Future Perspectives References 27: Biogenic Synthesis of Metal Nanoparticles by Plants 27.1 Introduction 27.1.1 Definition of Nanotechnology and Its Background 27.1.2 Type of Nanostructures 27.1.3 Nanoparticle Synthesis 27.1.3.1 Physical Procedures 27.1.3.2 Chemical Methods 27.1.3.3 Biological Methods 27.1.3.3.1 Advantage of Biological Nanoparticles 27.1.3.3.2 Plant-Mediated Synthesis (Phytosynthesis) of Nanoparticles 27.2 Characterization of Nanoparticle 27.2.1 UV-VIS Spectroscopy 27.2.2 FTIR Spectroscopy 27.2.3 Transmission Electron Microscopy (TEM) 27.2.4 Scanning Electron Microscopy(SEM) 27.2.5 X-Ray Diffraction (XRD) 27.2.6 Energy Dispersive X-Ray Spectroscopy (EDS or EDX) 27.3 Nanoparticles and Their Applications References Correction to: Application of Nanotechnology in Agricultural Farm Animals Correction to: Chapter 1 in: M. Ghorbanpour et al. (eds.), Biogenic Nano-Particles and their Use in Agro-ecosystems, https://doi.org/10.1007/978-981-15-2985-6_1