دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بیوتکنولوژی ویرایش: نویسندگان: Baskar Gurunathan. Renganathan Sahadevan سری: ISBN (شابک) : 0323900402, 9780323900409 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 815 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Biofuels and Bioenergy: A Techno-Economic Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سوخت های زیستی و انرژی زیستی: یک رویکرد فنی-اقتصادی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Biofuels and Bioenergy Copyright Contents Preface List of contributors 1 Boundaries and openings of biorefineries towards sustainable biofuel production 1.1 Introduction 1.1.1 Biorefinery 1.2 Sources of biorefinery 1.2.1 Phase I biorefinery 1.2.2 Phase II biorefinery 1.2.3 Phase III biorefinery 1.3 Classification of biofuels based on biomass 1.3.1 First-generation fuels 1.3.2 Second-generation fuels 1.3.3 Third-generation fuels 1.3.4 Fourth-generation fuels 1.4 Production methods of biofuel 1.5 Pretreatments 1.5.1 Mechanical methods 1.5.2 Thermochemical methods 1.5.3 Chemical pretreatment 1.5.4 Biological pretreatment 1.6 Production of different biofuels 1.6.1 Bioelectricity generation 1.7 Production of ethanol and electricity 1.8 Production of ethanol, lactic acid, and electricity 1.9 Furfural, ethanol and electricity production 1.10 Coproduction of butanol and electricity 1.11 Production of methanol and electricity 1.12 Purification process 1.13 Biogas—biomethane production 1.14 Applications 1.15 Limitations of biorefineries 1.16 Future perspectives of biorefineries 1.17 Conclusion References 2 A perspective on the biorefinery approaches for bioenergy production in a circular bioeconomy process 2.1 Introduction 2.2 Bioenergy 2.2.1 Biorefinery 2.2.1.1 Classification of biorefineries 2.2.2 Valorization of biomass 2.3 Bioeconomy, circular economy, and green economy 2.3.1 Circular bioeconomy 2.3.2 Biorefinery and circular bioeconomics 2.3.2.1 Lignocellulosic biorefinery 2.3.2.2 Algal biomass 2.4 Limitations and future perspective of circular bioeconomy 2.5 Conclusion Acknowledgment References 3 A comprehensive integration of biorefinery concepts for the production of biofuels from lignocellulosic biomass 3.1 Introduction 3.2 Biomass for biorefinery 3.2.1 Algal biorefinery 3.2.2 Lignocellulosic biorefinery 3.2.2.1 Occurrence and composition of lignocellulosic biomass 3.2.2.1.1 Agricultural residues 3.2.2.1.2 Forest residues 3.2.2.1.3 Energy crops 3.3 Biofuels from lignocellulosic biomass 3.4 Strategies for the treatment of lignocellulosic biomass 3.4.1 Pretreatment 3.4.2 Separate hydrolysis and fermentation 3.4.3 Simultaneous saccharification and fermentation 3.5 Metabolic engineering approaches for biofuel production 3.6 Integrated biorefinery 3.7 Constrains and challenges 3.8 Economic aspects and future of lignocellulosic biorefinery 3.9 Conclusion Acknowledgments References 4 Evaluation of activated sludge derived from wastewater treatment process as a potential biorefinery platform 4.1 Introduction 4.2 Activated sludge as a potential resource for fermentative products 4.2.1 Analytical techniques to characterize organic valuables in sludge fermentation 4.2.2 Organic molecules characterized in sludge fermentation 4.3 Activated sludge as refinery for biogases (methane and hydrogen) 4.3.1 Physicochemical parameters for activated sludge as biorefinery 4.3.2 Biogas yields obtained using sludge fermentation 4.3.3 Limitations of sludge bioprocessing and refinements 4.4 Activated sludge as a source of other organic by-products (fertilizer, refuse-derived fuel) 4.4.1 Reduced sludge for agricultural use 4.4.2 Other biorefinery perspectives for reduced sludge 4.5 Conclusion Acknowledgments References 5 Insights into the impact of biorefineries and sustainable green technologies on circular bioeconomy 5.1 Introduction 5.2 Bioeconomy and circular economy collide in the circular bioeconomy 5.3 Impact of biorefinery processes on circular bioeconomy 5.4 Product usage strategies for circular bioeconomy 5.4.1 Biomimicry and waste biorefinery 5.4.2 Metabolic approach 5.4.3 Lignocellulosic biorefinery 5.4.4 Municipal waste biorefinery 5.5 Reusing bio-based high-value products 5.6 Effect of biomass utilization on circular bioeconomy 5.6.1 Cascading the use of biomass 5.6.2 Waste-to-energy technologies 5.7 Agriculture management for sustainable circular bioeconomy 5.8 Industrial and environmental policy for promoting circular bioeconomy 5.9 Conclusion References 6 Fermentation technology for ethanol production: current trends and challenges 6.1 Introduction 6.2 Lignocellulosic biomass 6.3 The electronic structure chemistry of cellulose, hemicellulose, and lignin 6.4 Pretreatment of lignocellulosic biomass 6.5 Fermentation technology 6.5.1 Separate hydrolysis and fermentation 6.5.2 Simultaneous saccharification and fermentation 6.6 Ethanol production using native microbes 6.6.1 C5 sugar fermentative microbes 6.6.2 C6 sugar fermentative microbes 6.7 Fermentation technology for ethanol production using recombinant engineered microbes 6.7.1 Yeast (Saccharomyces cerevisiae) 6.7.2 Zymomonas mobilis 6.7.3 Escherichia coli 6.8 Trends, challenges, and future prospects in the bioethanol production 6.8.1 Trends 6.8.2 Challenges and prospects 6.9 Conclusion References 7 Improved enzymatic hydrolysis of lignocellulosic waste biomass: most essential stage to develop cost-effective second-gen... 7.1 Introduction 7.2 Enzymatic saccharification of lignocellulosic feedstocks 7.2.1 Different modes of enzymatic saccharification and their technical aspects 7.3 Factors influences in efficient enzymatic saccharification of lignocellulosic biomass 7.3.1 Ideal pretreatment of biomass 7.3.2 Utilization of potent enzymes, produced from waste biomasses and high-yield microbes 7.3.3 Reaction conditions influencing enzymatic hydrolysis process 7.4 Reusability of cellulase enzyme to develop cost-effective enzymatic saccharification process 7.5 Economic aspects and future prospective of enzymatic saccharification-based lignocellulosic biofuel production 7.6 Conclusion References 8 Advances and sustainable conversion of waste lignocellulosic biomass into biofuels 8.1 Introduction 8.2 Biofuel: a sustainable fuel for future 8.3 Lignocellulose: a potential substrate for the biofuel product 8.4 Pretreatment methods for lignocellulose biomass 8.4.1 Physical methods 8.4.2 Mechanical pretreatment methods 8.4.3 Irradiation pretreatment method 8.4.4 Pyrolysis 8.4.5 Chemical methods 8.4.5.1 Pretreatment using acids 8.4.5.2 Alkaline pretreatment 8.4.5.3 Pretreatment using organosolvation methods 8.4.5.4 Oxidative pretreatment 8.4.6 Biological pretreatment methods 8.4.7 Microbial pretreatment method 8.5 Sources of lignocellulose biomass 8.5.1 Agricultural biomass 8.5.2 Forestry biomass 8.5.3 Industrial and municipal biomass 8.5.4 Wasteland biomass 8.6 Analysis 8.6.1 Fourier transform infrared spectroscopy/X-ray 8.7 Potential microbial strains involved in biofuel productions 8.8 Fermentation methods for biofuel production 8.8.1 Separated hydrolysis and fermentation 8.8.2 Simultaneous saccharification and fermentation 8.9 Reactor configuration 8.10 Future perspectives 8.11 Challenges 8.12 Conclusion References 9 Lignocellulosic biomass as an alternate source for next-generation biofuel 9.1 Introduction 9.2 Raw materials 9.2.1 Wheat 9.2.2 Corn 9.2.3 Sugarcane 9.2.4 Wood/straw dust 9.3 Lignocellulosic material 9.3.1 Composition of lignocellulosic feedstocks 9.3.1.1 Biomass from woody and herbaceous trees 9.3.1.2 Microalgae 9.4 Process for converting the lignocellulose to biofuels 9.4.1 Biological process 9.4.1.1 Pretreatment 9.4.1.1.1 Physical method 9.4.1.1.2 Chemical method 9.4.1.1.3 Biological method 9.4.1.2 Hydrolysis 9.4.1.3 Fermentation 9.4.2 Thermochemical process 9.5 Conclusion References 10 Process intensification in biobutanol production 10.1 Introduction 10.2 Biobutanol 10.2.1 Need of biobutanol 10.2.2 Characteristics of biobutanol 10.2.3 Applications of butanol 10.3 Production of biobutanol 10.3.1 Preface for biobutanol production 10.3.2 History of biobutanol production 10.3.3 Categories of biobutanol 10.3.4 Microorganism for biobutanol production 10.3.5 Challenges in biobutanol production 10.4 Process intensification 10.5 Process intensification in production of biobutanol 10.5.1 Bioreactors 10.5.1.1 Batch reactors 10.5.1.2 Stirred tank bio-reactor 10.5.1.3 Oscillatory baffled bioreactor 10.5.2 Continuous biofilm fixed bed reactor 10.5.2.1 Fibrous bed bioreactor 10.5.3 Membrane methods 10.5.3.1 Membrane bioreactor 10.5.3.2 Pervaporation 10.5.3.3 Pervaporation with ionic liquid supported membrane 10.5.3.4 Pervaporation with nano-composite membrane 10.5.3.5 Thermo-pervaporation 10.5.3.6 Thermo-pervaporation assisted by phase separation 10.5.3.7 Sweeping gas pervaporation 10.5.3.8 Reverse osmosis 10.5.3.9 Liquid membrane 10.5.3.10 Perstraction 10.5.3.11 Membrane distillation 10.5.4 Distillation methods 10.5.4.1 Distillation 10.5.4.2 Vacuum distillation 10.5.4.3 Flash fermentation 10.5.5 Fermentation with gas stripping 10.5.5.1 Batch fermentation with gas stripping 10.5.5.2 Fed batch fermentation with gas stripping 10.5.5.3 Continuous multifeed bioreactor with in situ gas stripping 10.5.5.4 Continuous immobilized cell fluidized bed reactor with gas stripping 10.5.5.5 Continuous acetone–butanol–ethanol fermentation with packed bed stripper 10.5.5.6 Trickle bed bioreactor with gas stripping 10.5.5.7 Fibrous bed bioreactor with two stage gas stripping 10.5.6 Liquid–liquid extraction methods 10.5.6.1 L–L extraction 10.5.6.2 Extractive fermentation 10.5.6.3 Use of ionic liquids 10.5.7 Adsorption methods 10.5.7.1 Adsorption 10.5.7.2 Biofilm reactor coupled with adsorption 10.5.8 Hybrid methods 10.5.8.1 Pervaporation–distillation 10.5.8.2 Vapor stripping–vapor permeation 10.5.8.3 Extraction–distillation 10.5.8.4 Adsorption–drying–desorption 10.5.8.5 Heat pump (vapor recompression)-assisted azeotropic dividing wall column 10.5.9 Other methods 10.5.9.1 Addition of reducing agent 10.5.9.2 Addition of supplementing agent 10.5.9.3 Addition of amino acids 10.5.9.4 Periodic reactor feeding 10.5.9.5 Ultrasound assisted fermentation 10.5.9.6 Nanotechnology 10.6 Conclusion References 11 Production of cellulosic butanol by clostridial fermentation: a superior alternative renewable liquid fuel 11.1 Introduction 11.2 Production of butanol by Clostridium sp 11.2.1 ABE fermentation 11.2.2 IBE fermentation 11.3 Factors affecting butanol production 11.4 Enhancement of ABE fermentation 11.4.1 Coculture of Clostridium sp 11.4.2 Metabolic engineering 11.5 Butanol production from LCB 11.5.1 Separate hydrolysis and fermentation 11.5.2 Consolidated bioprocessing of LCB 11.6 Technoeconomic analysis 11.7 Conclusion References 12 Biobutanol separation using ionic liquids as a green solvent 12.1 Introduction 12.2 Butanol 12.2.1 Background 12.2.2 Characteristics 12.2.3 Applications 12.2.4 Production 12.2.5 Separation 12.3 Liquid–liquid extraction and ionic liquids 12.3.1 Separation 12.3.2 Liquid–liquid extraction 12.3.3 Ionic liquids 12.4 Butanol separation by ionic liquids 12.4.1 Imidazolium-based ionic liquids 12.4.2 Phosphonium-based ionic liquids 12.4.3 Piperidinium-based ionic liquids 12.4.4 Pyrrolidinium-based ionic liquids 12.4.5 Morpholinium-based ionic liquids 12.4.6 Ammonium-based ionic liquids 12.4.7 Supported ionic liquid membrane 12.4.8 Perstraction using ionic liquids 12.5 Toxicity and biocompatibility of ionic liquids 12.5.1 Biocompatibility 12.5.2 Toxicity 12.6 Recovery and reuse of ionic liquids 12.7 Future perspectives 12.8 Conclusion References 13 Synergistic prospects of microalgae after wastewater treatment to be used for biofuel production 13.1 Introduction 13.2 Appropriate selection methods for effective biofuel production 13.2.1 Potential microalgae for biofuel production through wastewater treatment 13.2.2 Selection of appropriate media for enhanced microalgal biomass and lipid yield 13.2.3 Selection of wastewater for microalgal growth 13.2.4 Selection of wastewater pretreatment 13.2.5 Free cell versus immobilized cell 13.2.5.1 Advantages of immobilization 13.3 Types of microalgae cultivation 13.3.1 High rate algal ponds 13.3.2 Photobioreactor 13.3.2.1 Tubular photobioreactor 13.3.2.2 Airlift column photobioreactor 13.3.2.3 Flat-plate photobioreactor 13.3.3 Hybrid system 13.3.4 Microalgae turf scrubber 13.4 Harvesting microalgal biomass 13.4.1 Chemical extraction 13.4.2 Mechanical extraction 13.4.3 Electrical extraction 13.4.4 Biological method of extraction 13.5 Biofuel production from wastewater using microalgae 13.5.1 Biodiesel 13.5.2 Bioethanol and biohydrogen 13.5.3 Syngas 13.5.3.1 Fischer–Tropsch 13.5.4 Biomethane 13.5.5 Jet fuel 13.6 Greenhouse gas mitigation 13.7 Future perspectives 13.8 Conclusion References 14 Concurrent reduction of CO2 and generation of biofuels by electrified microbial systems—concepts and perspectives 14.1 Introduction 14.1.1 Electrode and possible effects on microbial electrosynthesis 14.1.2 Membrane configurations 14.2 Bacterial electrotrophs 14.3 Mechanism of electron uptake 14.3.1 Indirect extracellular electron transfer or mediator-dependent transfer 14.3.2 Direct extracellular electron transfer or mediator-free transfer 14.4 Carbon dioxide reduction and biofuels generation 14.5 Challenges and future prospects 14.6 Conclusion References 15 Challenges and opportunities in large-scale production of biodiesel 15.1 Introduction 15.2 Assessment from small-scale to large-scale production 15.2.1 Supply chain and logistics 15.2.2 Storage of oil seed 15.3 Commercial-scale production of triglycerides 15.3.1 Source of triglycerides 15.3.2 Large scale oil production 15.3.2.1 Extraction of oil 15.3.2.2 Mechanical pressing 15.3.2.3 Solvent extraction method 15.3.3 Vegetable oil refining process 15.3.4 Degumming 15.3.4.1 Chemical methods 15.3.5 Deacidification process 15.3.5.1 Traditional alkali treatment methodology 15.3.5.2 Physical deacidification 15.3.6 Bleaching 15.3.7 Deodorization process 15.4 Large-scale production structure of biodiesel plant 15.4.1 Refining process for biodiesel production 15.4.2 Esterification process 15.4.3 Transesterification process 15.4.4 Pumps and pipelines used 15.4.5 Reactors used 15.4.5.1 Batch reactors 15.4.5.2 Continuous stirred tank reactors 15.4.5.3 Other reactors 15.4.5.3.1 Plug flow reactor 15.4.5.4 Microreactors 15.4.6 Product separation 15.4.7 Neutralization 15.4.8 Methanol recovery 15.4.9 Biodiesel purification 15.4.9.1 Water washing process 15.4.9.2 Dry washing 15.4.10 Biodiesel drying 15.4.11 Recovery of methanol 15.5 Glycerol purification 15.5.1 Free fatty acid treatment 15.6 Wastewater treatment 15.6.1 Generation of wastewater 15.6.2 Significance of wastewater treatment method 15.6.3 Physical methods 15.6.3.1 Adsorption 15.6.3.2 Acidification 15.6.3.3 Coagulation 15.6.4 Electrochemical method 15.6.4.1 Electrocoagulation 15.6.4.2 Hydrothermal electrolysis 15.6.5 Biological methods 15.7 Cost analysis of wastewater treatment 15.7.1 Economic analysis of biodiesel production 15.8 Conclusion References 16 Lipid-derived biofuel: production methodologies 16.1 Introduction 16.2 Properties of biodiesel 16.3 Biodiesel production methodologies 16.3.1 Direct use and blending 16.3.2 Microemulsion 16.3.3 Pyrolysis 16.3.3.1 Pyrolysis process categorization 16.3.3.1.1 Slow pyrolysis process 16.3.3.1.2 Fast pyrolysis process 16.3.3.1.3 Flash pyrolysis process 16.3.3.2 Stages of pyrolysis process 16.3.3.2.1 Elimination of biochar 16.3.3.2.2 Product separation 16.3.3.3 Reactors used for pyrolysis 16.4 Transesterification process 16.4.1 Parameters affecting transesterification process 16.4.1.1 Effect of free fatty acid 16.4.1.2 Effect of moisture content 16.4.1.3 Concentration of catalyst 16.4.1.4 Effect of oil-to-alcohol-molar ratio 16.4.1.5 Effect of mixing intensity 16.4.1.6 Reaction temperature 16.4.1.7 Reaction time 16.4.1.8 Effect of cosolvents 16.4.2 Types of transesterification process 16.4.2.1 Catalytic transesterification 16.4.2.1.1 Acid catalysis 16.4.2.1.2 Base catalysis 16.4.2.2 Enzyme catalysts 16.4.2.3 Ionic liquid catalysts 16.4.2.4 Supercritical transesterification process 16.4.2.4.1 Noncatalytic process 16.4.2.4.2 Catalytic process 16.4.2.5 Recent technology 16.4.2.5.1 Microwave irradiation method 16.4.2.5.2 Ultrasonication method 16.5 Overview of production methods 16.6 Conclusion References 17 Interesterification reaction of vegetable oil and alkyl acetate as alternative route for glycerol-free biodiesel synthesis 17.1 Introduction 17.2 Biodiesel 17.3 Interesterification reaction 17.4 Kinetic model of interesterification reaction 17.5 Case study: kinetic study on the biodiesel synthesis from Jatropha (Jatropha curcas L.) with methyl acetate in the pre... 17.5.1 Methods 17.5.2 Kinetic model 17.5.3 Characterization of Jatropha oil 17.5.4 Effect of catalyst concentration 17.5.5 Effect of Jatropha oil to methyl acetate molar ratio 17.5.6 Effect of reaction time and temperature 17.5.7 Kinetic study 17.6 Conclusion Acknowledgment References 18 Recent advances of lipase-catalyzed greener production of biodiesel in organic reaction media: economic and sustainable ... 18.1 Introduction 18.2 Recent literature survey of lipase-catalyzed synthesis of biodiesel 18.3 Reaction parameters 18.3.1 Biocatalyst screening 18.3.2 Effect of oil-to-alcohol mole ratio 18.3.3 Effect of stepwise addition of alcohol 18.3.4 Effect of solvent and cosolvent 18.3.5 Effect of temperature 18.3.6 Effect of water content 18.3.7 Effect of biocatalyst amount 18.3.8 Effect of mass transfer 18.3.9 Effect of adsorbent 18.3.10 Effect alcohol chain length 18.3.11 Effect of feedstock (waste or fresh oils) from various sources 18.3.12 Effect of recycle 18.4 Economic and sustainable viewpoint 18.4.1 Catalyst lipase and immobilization 18.4.2 Use of waste feedstock 18.4.3 Processing parameters and optimization 18.4.4 Scale-up synthesis 18.4.5 Greenness of the process 18.5 Conclusion References 19 Efficient utilization of seed biomass and its by-product for the biodiesel production 19.1 Introduction 19.2 Second-generation feedstock for biodiesel production 19.2.1 Advantages of nonedible oils 19.3 Problems in the exploitation of nonedible oils 19.4 Deoiled seed meal after oil extraction 19.4.1 Sulfonation 19.4.2 Carbonization followed by sulfonation 19.4.3 Hydrothermal carbonization 19.4.4 Pyrolyzation followed by sulfonation 19.5 Seed cake as a catalyst for esterification process 19.6 Factors influencing seed cake catalyst preparation 19.6.1 Reusability of catalyst 19.7 Characterization of catalyst 19.8 Conclusion References 20 Catalytic pyrolysis for upgrading of biooil obtained from biomass 20.1 Introduction 20.2 Catalytic fast pyrolysis of biomass 20.2.1 Advantages of catalytic pyrolysis 20.3 Commercial-scale pyrolysis plant 20.4 Types of catalysts used in pyrolysis 20.4.1 Zeolites 20.4.1.1 Zeolite Socony Mobil–5 catalyst 20.4.2 Mesoporous catalyst 20.5 Chemical reactions in catalytic fast pyrolysis 20.5.1 Deoxygenation 20.5.2 Cracking 20.5.3 Dehydration 20.5.4 Decarboxylation 20.6 Reactors for catalytic pyrolysis 20.7 Process parameters 20.7.1 Temperature 20.7.2 Ratio of biomass to catalyst 20.7.3 Catalyst contact time 20.7.4 Vapor residence time 20.8 Challenges and recommendations 20.9 Future perspectives 20.10 Conclusion Acknowledgments References 21 Recent trends in the pyrolysis and gasification of lignocellulosic biomass 21.1 Introduction 21.1.1 Background 21.1.2 Potential feedstocks for pyrolysis and gasification 21.1.2.1 Municipal solid waste 21.1.2.2 Digestate 21.1.2.3 Forestry residue 21.1.2.4 Agricultural residue 21.1.3 Pretreatment of lignocellulosic biomass 21.2 Pyrolysis 21.2.1 Types of pyrolysis 21.2.1.1 Slow pyrolysis 21.2.1.2 Intermediate pyrolysis 21.2.1.3 Fast pyrolysis 21.2.1.4 Flash pyrolysis 21.2.2 Reactor configuration 21.2.2.1 Fixed-bed reactor 21.2.2.2 Fluidized-bed reactor 21.2.2.3 Ablative reactor 21.2.2.4 Rotating cone 21.2.2.5 Auger/screw reactor 21.2.2.6 Pyroformer 21.2.2.7 Thermo-catalytic reforming 21.2.3 Factors affecting pyrolysis products 21.2.3.1 Impact of biomass type and particle size 21.2.3.2 Impact of temperature and residence time in pyrolysis 21.2.3.3 Impact of heating rate 21.2.4 Recent developments in pyrolysis 21.2.4.1 Thermo-catalytic reforming 21.2.4.2 Catalytic fast pyrolysis 21.2.4.3 Microwave pyrolysis 21.2.5 Current status and challenges of pyrolysis 21.2.5.1 Quality of biooil 21.2.5.2 Feedstock processing requirements for pyrolysis 21.3 Gasification 21.3.1 Gasification theory 21.3.1.1 Feedstock parameters 21.3.1.1.1 Moisture content 21.3.1.1.2 Particle size 21.3.1.1.3 Ash content 21.3.1.2 Gasification parameters 21.3.1.2.1 Bed material 21.3.1.2.2 Operating pressure 21.3.1.2.3 Gasification agent 21.3.1.2.4 Equivalence ratio 21.3.1.2.5 Steam-to-biomass ratio 21.3.2 Gasifier types 21.3.2.1 Fixed-bed gasifier 21.3.2.1.1 Downdraft gasifier 21.3.2.1.2 Updraft gasifier 21.3.2.1.3 Cross-draft gasifier 21.3.2.2 Fluidized-bed gasifier 21.3.2.2.1 Bubbling bed gasifier 21.3.2.2.2 Circulating bed gasifier 21.3.2.3 Other types of gasifiers 21.3.2.3.1 Entrained flow gasifier 21.3.2.3.2 Dual fluidized-bed gasifier 21.3.2.3.3 Plasma gasifier 21.3.2.3.4 Rotary kiln gasifier 21.3.3 Current status and challenges of gasification 21.3.3.1 Bed agglomeration 21.3.3.2 Product gas cleaning 21.4 Future of pyrolysis and gasification 21.4.1 Biomass-based hydrogen 21.4.2 Bioethanol 21.5 Conclusion References 22 Experimental investigation of performance of bio diesel with different blends in diesel engine 22.1 Introduction 22.1.1 Need for alternative green fuel 22.1.2 Cashew nut shell liquid 22.1.3 Cardanol 22.2 Experimental section 22.2.1 Materials 22.2.2 Measurements 22.2.2.1 Densitometer 22.2.2.2 Bomb calorimeter 22.2.2.3 Kirloskar engine TV1 specifications 22.2.3 Blending of auxiliaries with cardanol 22.2.3.1 Physical and chemical characterization of cardanol 22.2.3.2 Emission and engine performance of compression ignition engine fueled with green fuel 22.2.4 Engine performance analysis 22.2.4.1 Maximum load calculation 22.2.4.2 Brake power 22.2.4.3 Indicated power 22.2.4.4 Frictional power 22.2.4.5 Total fuel consumption 22.2.4.6 Specific fuel consumption 22.2.4.7 Indicated mean effective pressure 22.2.4.8 Brake mean effective pressure 22.2.4.9 Indicated thermal efficiency 22.2.4.10 Brake thermal efficiency 22.2.4.11 Mechanical efficiency 22.2.4.12 Smoke opacity 22.3 Results and discussion 22.3.1 Density of pure components 22.3.2 Performance and emission characteristics of alternative green fuel 22.3.2.1 Variation of break thermal efficiency 22.3.2.2 Variation of specific fuel consumption 22.3.2.3 Variation of mechanical efficiency 22.3.2.4 Variation of air-fuel ratio 22.3.2.5 Variation of exhaust gas temperature 22.3.2.6 Variation of carbon monoxide emission 22.3.2.7 Variation of hydrocarbon emission 22.3.2.8 Variation of oxides of nitrogen emission 22.3.2.9 Variation of carbon dioxide emission 22.3.2.10 Variation of smoke opacity 22.4 Conclusion References 23 Technoeconomic evaluation of 2G ethanol production with coproducts from rice straw 23.1 Introduction 23.2 Process description of rice straw to ethanol and coproducts 23.2.1 Pretreatment of rice straw 23.2.2 Enzymatic hydrolysis 23.2.3 Glucose (C6) fermentation 23.2.4 Xylose (C5) fermentation 23.2.5 Coproducts from rice straw 23.2.5.1 Furfural production 23.2.5.2 Lignin conversion 23.3 Process design 23.3.1 Various cases 23.3.2 Simulation methodology 23.4 Results and discussion 23.4.1 Material flow 23.4.2 Economic analysis 23.4.3 Sensitivity analysis 23.5 Future perspective 23.6 Conclusion References 24 Technoeconomic analysis of biodiesel production using noncatalytic transesterification 24.1 Introduction 24.2 Characteristics of supercritical methanol 24.3 Reaction kinetics of transesterification 24.4 Upshots of operating parameters on biodiesel using SCM 24.4.1 Temperature 24.4.2 Pressure 24.4.3 Alcohol/oil ratio 24.4.4 Feedstock handling 24.5 Technoeconomic analysis of SCM method 24.5.1 Case study 24.5.2 Process results 24.5.3 Economic review 24.6 Conclusion References 25 Techno-economic analysis of biodiesel production from nonedible biooil using catalytic transesterification 25.1 Introduction 25.2 Nonedible source for biodiesel production 25.2.1 Gossypium 25.2.2 Jatropha curcas 25.2.3 Simmondsia chinensis 25.2.4 Millettia pinnata 25.2.5 Linum usitatissimum 25.2.6 Madhuca longifolia 25.2.7 Azadirachta indica 25.2.8 Hevea brasiliensis 25.2.9 Nicotiana tabacum 25.2.10 Callophyllum inophyllum 25.3 Catalyst for biodiesel production 25.3.1 Homogeneous Catalyst 25.3.2 Heterogeneous Catalyst 25.4 Techno-economic analysis 25.4.1 Steps involved in techno-economic analysis 25.4.1.1 Process design 25.4.1.2 Mass and energy balance 25.4.1.3 Cost estimation 25.4.1.4 Profitability analysis 25.4.1.5 Sensitivity analysis 25.4.2 Economic factors 25.4.2.1 Capital investment 25.4.2.2 Operating cost 25.4.2.3 Revenue 25.4.2.4 Gross margin 25.4.2.5 Return on investment 25.4.2.6 Payback period 25.4.2.7 Internal rate of return 25.4.2.8 Net present value 25.5 Techno-economic analysis of biodiesel production 25.6 Conclusion Reference 26 Technoeconomic analysis of biofuel production from marine algae 26.1 Introduction 26.2 Macroalgae production 26.2.1 Cultivation 26.2.1.1 Hatchery production 26.2.1.2 Onshore growing methods 26.2.2 Harvesting 26.2.3 Postharvesting 26.2.3.1 Removing foreign objects 26.2.3.2 Milling 26.2.3.3 Dewatering and drying 26.3 Extraction of oil from macroalgae for biodiesel production 26.3.1 Pretreatment of algal biomass 26.3.2 Soxhlet extraction 26.3.3 Factors affecting extraction of algal oil 26.3.3.1 Effect of particle size 26.3.3.2 Effect of biomass moisture 26.3.3.3 Effect of extraction temperature 26.3.3.4 Effect of time 26.3.3.5 Effect of solvent-to-biomass ratio 26.3.3.6 Effect of solvent 26.3.3.7 Effect of solvent flow 26.4 Production of biodiesel 26.4.1 Transesterification of algal oil 26.4.1.1 Homogeneous catalysis 26.4.1.2 Heterogeneous catalysis 26.4.1.3 Kinetics of biodiesel production from algal oil 26.5 Production of biogas from macroalgae 26.5.1 Anaerobic digestion 26.6 Production of bioethanol from marine macroalgae 26.7 Technoeconomic analysis 26.7.1 Hatchery and grow-out systems 26.7.2 Drying systems 26.7.3 Transportation systems 26.7.4 Algal oil extraction systems 26.7.5 Transesterification of algal oil 26.7.6 Fermentation 26.7.7 Technoeconomic analysis of biofuel from macroalgae 26.8 Conclusion References 27 Techno-economic assessment of biofuel production using thermochemical pathways 27.1 Introduction 27.2 Thermochemical pathways of biofuel production 27.2.1 Torrefaction 27.2.2 Hydrothermal liquefaction 27.2.3 Pyrolysis 27.2.4 Gasification 27.3 Techno-economic assessment of biofuels using thermochemical methods 27.3.1 Methodological framework of techno-economic assessment 27.3.2 Overview of the techno-economic assessment studies of biofuel production using thermo-chemical pathways 27.4 Challenges, progress, opportunities, and future perspectives 27.5 Conclusion References 28 Modeling and technoeconomic analysis of biogas production from waste food 28.1 Introduction 28.2 Materials and methods 28.3 Technoeconomic analysis 28.4 Results and discussion 28.5 Economic analysis results 28.6 Conclusion References 29 Techno-economic and environmental impact analysis of biofuels produced from microalgal biomass 29.1 Introduction 29.2 Technological assessment 29.2.1 Influential factors for biodiesel production 29.2.2 Algae cultivation 29.2.2.1 Optimum parameters 29.2.2.2 Mode of cultivation 29.2.3 Biomass pretreatment and extraction 29.2.4 Harvesting of algal culture 29.2.4.1 Physical and chemical methods for harvesting 29.2.5 Extraction 29.2.6 Transesterification 29.2.7 Scale-up 29.3 Economic assessment 29.3.1 Cost analysis 29.3.2 Techno-economic analysis 29.4 Environmental impact assessment 29.4.1 Microalgal biomass 29.4.1.1 Water 29.4.1.2 Land 29.4.1.3 Nutrients 29.4.1.4 Atmospheric emissions 29.5 Major challenges associated with biofuels production from microalgal biomass 29.6 Conclusions References 30 Computer-aided environmental and technoeconomic analyses as tools for designing biorefineries under the circular bioecon... 30.1 Introduction 30.2 Circular bioeconomy framework towards biorefinery design 30.3 Computer-aided environmental analysis of biorefineries 30.4 Computer-aided technoeconomic analysis of biorefineries 30.5 Case study for the production of ethanol and succinic acid under circular economy 30.6 Environmental assessment of ethanol and succinic acid production under circular bioeconomy 30.7 Technoeconomic assessment of ethanol and succinic acid production under circular bioeconomy 30.8 Conclusions References 31 Environmental impact analysis of biofuels and bioenergy: a globalperspective 31.1 Introduction 31.2 Biofuel: a sustainable fuel for future 31.3 Bioenergy: a sustainable fuel for future 31.4 Resource availability for biofuel production 31.5 Impact of biomass on environment 31.6 Impact of combustion efficiency in environment 31.7 Impact of biofuel production on biodiversity 31.8 Environmental impacts on biomass pretreatment 31.9 Managing ecosystems and its services 31.10 Regulations related to environmental sustainability 31.11 Impact of biofuel production on water quality 31.12 Conclusion References 32 Environmental impacts of biofuels and their blends: a case study on waste vegetable oil-derived biofuel blends 32.1 Introduction 32.2 Environmental impacts of biofuels 32.2.1 Life cycle assessment methodology 32.2.2 Environmental impact categories 32.3 Environmental impacts of waste vegetable oil-based biofuels: a case study 32.3.1 Methods 32.3.2 Physical properties of various test fuels 32.3.3 Engine performance and emission analysis 32.3.4 Environmental impacts of various waste vegetable oil-based biofuels 32.3.4.1 Climate change 32.3.4.2 Terrestrial acidification 32.3.4.3 Eutrophication in water bodies 32.3.4.4 Environmental eco-toxicity 32.3.4.5 Particulate matter formation and ozone depletion 32.3.4.6 Resource depletion 32.4 Conclusion Acknowledgments References 33 Solid biofuel production, environmental impact, and technoeconomic analysis 33.1 Introduction 33.2 Importance of solid fuel 33.3 Types of solid biofuels 33.3.1 Wood-based fuel 33.3.2 Coal and coke 33.3.3 Peat 33.4 Processes for the usage of solid biofuel 33.4.1 Anaerobic digestion 33.4.2 Saccharification and fermentation 33.4.3 Torrefaction 33.4.4 Liquefaction 33.4.5 Gasification 33.4.6 Combustion 33.5 Environmental impact of solid biofuels 33.6 Technoeconomic analysis of solid biofuel 33.7 Conclusions References Index