ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biofuels and Bioenergy: A Techno-Economic Approach

دانلود کتاب سوخت های زیستی و انرژی زیستی: یک رویکرد فنی-اقتصادی

Biofuels and Bioenergy: A Techno-Economic Approach

مشخصات کتاب

Biofuels and Bioenergy: A Techno-Economic Approach

دسته بندی: بیوتکنولوژی
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0323900402, 9780323900409 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 815 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 30 مگابایت 

قیمت کتاب (تومان) : 32,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Biofuels and Bioenergy: A Techno-Economic Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سوخت های زیستی و انرژی زیستی: یک رویکرد فنی-اقتصادی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Biofuels and Bioenergy
Copyright
Contents
Preface
List of contributors
1 Boundaries and openings of biorefineries towards sustainable biofuel production
	1.1 Introduction
		1.1.1 Biorefinery
	1.2 Sources of biorefinery
		1.2.1 Phase I biorefinery
		1.2.2 Phase II biorefinery
		1.2.3 Phase III biorefinery
	1.3 Classification of biofuels based on biomass
		1.3.1 First-generation fuels
		1.3.2 Second-generation fuels
		1.3.3 Third-generation fuels
		1.3.4 Fourth-generation fuels
	1.4 Production methods of biofuel
	1.5 Pretreatments
		1.5.1 Mechanical methods
		1.5.2 Thermochemical methods
		1.5.3 Chemical pretreatment
		1.5.4 Biological pretreatment
	1.6 Production of different biofuels
		1.6.1 Bioelectricity generation
	1.7 Production of ethanol and electricity
	1.8 Production of ethanol, lactic acid, and electricity
	1.9 Furfural, ethanol and electricity production
	1.10 Coproduction of butanol and electricity
	1.11 Production of methanol and electricity
	1.12 Purification process
	1.13 Biogas—biomethane production
	1.14 Applications
	1.15 Limitations of biorefineries
	1.16 Future perspectives of biorefineries
	1.17 Conclusion
	References
2 A perspective on the biorefinery approaches for bioenergy production in a circular bioeconomy process
	2.1 Introduction
	2.2 Bioenergy
		2.2.1 Biorefinery
			2.2.1.1 Classification of biorefineries
		2.2.2 Valorization of biomass
	2.3 Bioeconomy, circular economy, and green economy
		2.3.1 Circular bioeconomy
		2.3.2 Biorefinery and circular bioeconomics
			2.3.2.1 Lignocellulosic biorefinery
			2.3.2.2 Algal biomass
	2.4 Limitations and future perspective of circular bioeconomy
	2.5 Conclusion
	Acknowledgment
	References
3 A comprehensive integration of biorefinery concepts for the production of biofuels from lignocellulosic biomass
	3.1 Introduction
	3.2 Biomass for biorefinery
		3.2.1 Algal biorefinery
		3.2.2 Lignocellulosic biorefinery
			3.2.2.1 Occurrence and composition of lignocellulosic biomass
				3.2.2.1.1 Agricultural residues
				3.2.2.1.2 Forest residues
				3.2.2.1.3 Energy crops
	3.3 Biofuels from lignocellulosic biomass
	3.4 Strategies for the treatment of lignocellulosic biomass
		3.4.1 Pretreatment
		3.4.2 Separate hydrolysis and fermentation
		3.4.3 Simultaneous saccharification and fermentation
	3.5 Metabolic engineering approaches for biofuel production
	3.6 Integrated biorefinery
	3.7 Constrains and challenges
	3.8 Economic aspects and future of lignocellulosic biorefinery
	3.9 Conclusion
	Acknowledgments
	References
4 Evaluation of activated sludge derived from wastewater treatment process as a potential biorefinery platform
	4.1 Introduction
	4.2 Activated sludge as a potential resource for fermentative products
		4.2.1 Analytical techniques to characterize organic valuables in sludge fermentation
		4.2.2 Organic molecules characterized in sludge fermentation
	4.3 Activated sludge as refinery for biogases (methane and hydrogen)
		4.3.1 Physicochemical parameters for activated sludge as biorefinery
		4.3.2 Biogas yields obtained using sludge fermentation
		4.3.3 Limitations of sludge bioprocessing and refinements
	4.4 Activated sludge as a source of other organic by-products (fertilizer, refuse-derived fuel)
		4.4.1 Reduced sludge for agricultural use
		4.4.2 Other biorefinery perspectives for reduced sludge
	4.5 Conclusion
	Acknowledgments
	References
5 Insights into the impact of biorefineries and sustainable green technologies on circular bioeconomy
	5.1 Introduction
	5.2 Bioeconomy and circular economy collide in the circular bioeconomy
	5.3 Impact of biorefinery processes on circular bioeconomy
	5.4 Product usage strategies for circular bioeconomy
		5.4.1 Biomimicry and waste biorefinery
		5.4.2 Metabolic approach
		5.4.3 Lignocellulosic biorefinery
		5.4.4 Municipal waste biorefinery
	5.5 Reusing bio-based high-value products
	5.6 Effect of biomass utilization on circular bioeconomy
		5.6.1 Cascading the use of biomass
		5.6.2 Waste-to-energy technologies
	5.7 Agriculture management for sustainable circular bioeconomy
	5.8 Industrial and environmental policy for promoting circular bioeconomy
	5.9 Conclusion
	References
6 Fermentation technology for ethanol production: current trends and challenges
	6.1 Introduction
	6.2 Lignocellulosic biomass
	6.3 The electronic structure chemistry of cellulose, hemicellulose, and lignin
	6.4 Pretreatment of lignocellulosic biomass
	6.5 Fermentation technology
		6.5.1 Separate hydrolysis and fermentation
		6.5.2 Simultaneous saccharification and fermentation
	6.6 Ethanol production using native microbes
		6.6.1 C5 sugar fermentative microbes
		6.6.2 C6 sugar fermentative microbes
	6.7 Fermentation technology for ethanol production using recombinant engineered microbes
		6.7.1 Yeast (Saccharomyces cerevisiae)
		6.7.2 Zymomonas mobilis
		6.7.3 Escherichia coli
	6.8 Trends, challenges, and future prospects in the bioethanol production
		6.8.1 Trends
		6.8.2 Challenges and prospects
	6.9 Conclusion
	References
7 Improved enzymatic hydrolysis of lignocellulosic waste biomass: most essential stage to develop cost-effective second-gen...
	7.1 Introduction
	7.2 Enzymatic saccharification of lignocellulosic feedstocks
		7.2.1 Different modes of enzymatic saccharification and their technical aspects
	7.3 Factors influences in efficient enzymatic saccharification of lignocellulosic biomass
		7.3.1 Ideal pretreatment of biomass
		7.3.2 Utilization of potent enzymes, produced from waste biomasses and high-yield microbes
		7.3.3 Reaction conditions influencing enzymatic hydrolysis process
	7.4 Reusability of cellulase enzyme to develop cost-effective enzymatic saccharification process
	7.5 Economic aspects and future prospective of enzymatic saccharification-based lignocellulosic biofuel production
	7.6 Conclusion
	References
8 Advances and sustainable conversion of waste lignocellulosic biomass into biofuels
	8.1 Introduction
	8.2 Biofuel: a sustainable fuel for future
	8.3 Lignocellulose: a potential substrate for the biofuel product
	8.4 Pretreatment methods for lignocellulose biomass
		8.4.1 Physical methods
		8.4.2 Mechanical pretreatment methods
		8.4.3 Irradiation pretreatment method
		8.4.4 Pyrolysis
		8.4.5 Chemical methods
			8.4.5.1 Pretreatment using acids
			8.4.5.2 Alkaline pretreatment
			8.4.5.3 Pretreatment using organosolvation methods
			8.4.5.4 Oxidative pretreatment
		8.4.6 Biological pretreatment methods
		8.4.7 Microbial pretreatment method
	8.5 Sources of lignocellulose biomass
		8.5.1 Agricultural biomass
		8.5.2 Forestry biomass
		8.5.3 Industrial and municipal biomass
		8.5.4 Wasteland biomass
	8.6 Analysis
		8.6.1 Fourier transform infrared spectroscopy/X-ray
	8.7 Potential microbial strains involved in biofuel productions
	8.8 Fermentation methods for biofuel production
		8.8.1 Separated hydrolysis and fermentation
		8.8.2 Simultaneous saccharification and fermentation
	8.9 Reactor configuration
	8.10 Future perspectives
	8.11 Challenges
	8.12 Conclusion
	References
9 Lignocellulosic biomass as an alternate source for next-generation biofuel
	9.1 Introduction
	9.2 Raw materials
		9.2.1 Wheat
		9.2.2 Corn
		9.2.3 Sugarcane
		9.2.4 Wood/straw dust
	9.3 Lignocellulosic material
		9.3.1 Composition of lignocellulosic feedstocks
			9.3.1.1 Biomass from woody and herbaceous trees
			9.3.1.2 Microalgae
	9.4 Process for converting the lignocellulose to biofuels
		9.4.1 Biological process
			9.4.1.1 Pretreatment
				9.4.1.1.1 Physical method
				9.4.1.1.2 Chemical method
				9.4.1.1.3 Biological method
			9.4.1.2 Hydrolysis
			9.4.1.3 Fermentation
		9.4.2 Thermochemical process
	9.5 Conclusion
	References
10 Process intensification in biobutanol production
	10.1 Introduction
	10.2 Biobutanol
		10.2.1 Need of biobutanol
		10.2.2 Characteristics of biobutanol
		10.2.3 Applications of butanol
	10.3 Production of biobutanol
		10.3.1 Preface for biobutanol production
		10.3.2 History of biobutanol production
		10.3.3 Categories of biobutanol
		10.3.4 Microorganism for biobutanol production
		10.3.5 Challenges in biobutanol production
	10.4 Process intensification
	10.5 Process intensification in production of biobutanol
		10.5.1 Bioreactors
			10.5.1.1 Batch reactors
			10.5.1.2 Stirred tank bio-reactor
			10.5.1.3 Oscillatory baffled bioreactor
		10.5.2 Continuous biofilm fixed bed reactor
			10.5.2.1 Fibrous bed bioreactor
		10.5.3 Membrane methods
			10.5.3.1 Membrane bioreactor
			10.5.3.2 Pervaporation
			10.5.3.3 Pervaporation with ionic liquid supported membrane
			10.5.3.4 Pervaporation with nano-composite membrane
			10.5.3.5 Thermo-pervaporation
			10.5.3.6 Thermo-pervaporation assisted by phase separation
			10.5.3.7 Sweeping gas pervaporation
			10.5.3.8 Reverse osmosis
			10.5.3.9 Liquid membrane
			10.5.3.10 Perstraction
			10.5.3.11 Membrane distillation
		10.5.4 Distillation methods
			10.5.4.1 Distillation
			10.5.4.2 Vacuum distillation
			10.5.4.3 Flash fermentation
		10.5.5 Fermentation with gas stripping
			10.5.5.1 Batch fermentation with gas stripping
			10.5.5.2 Fed batch fermentation with gas stripping
			10.5.5.3 Continuous multifeed bioreactor with in situ gas stripping
			10.5.5.4 Continuous immobilized cell fluidized bed reactor with gas stripping
			10.5.5.5 Continuous acetone–butanol–ethanol fermentation with packed bed stripper
			10.5.5.6 Trickle bed bioreactor with gas stripping
			10.5.5.7 Fibrous bed bioreactor with two stage gas stripping
		10.5.6 Liquid–liquid extraction methods
			10.5.6.1 L–L extraction
			10.5.6.2 Extractive fermentation
			10.5.6.3 Use of ionic liquids
		10.5.7 Adsorption methods
			10.5.7.1 Adsorption
			10.5.7.2 Biofilm reactor coupled with adsorption
		10.5.8 Hybrid methods
			10.5.8.1 Pervaporation–distillation
			10.5.8.2 Vapor stripping–vapor permeation
			10.5.8.3 Extraction–distillation
			10.5.8.4 Adsorption–drying–desorption
			10.5.8.5 Heat pump (vapor recompression)-assisted azeotropic dividing wall column
		10.5.9 Other methods
			10.5.9.1 Addition of reducing agent
			10.5.9.2 Addition of supplementing agent
			10.5.9.3 Addition of amino acids
			10.5.9.4 Periodic reactor feeding
			10.5.9.5 Ultrasound assisted fermentation
			10.5.9.6 Nanotechnology
	10.6 Conclusion
	References
11 Production of cellulosic butanol by clostridial fermentation: a superior alternative renewable liquid fuel
	11.1 Introduction
	11.2 Production of butanol by Clostridium sp
		11.2.1 ABE fermentation
		11.2.2 IBE fermentation
	11.3 Factors affecting butanol production
	11.4 Enhancement of ABE fermentation
		11.4.1 Coculture of Clostridium sp
		11.4.2 Metabolic engineering
	11.5 Butanol production from LCB
		11.5.1 Separate hydrolysis and fermentation
		11.5.2 Consolidated bioprocessing of LCB
	11.6 Technoeconomic analysis
	11.7 Conclusion
	References
12 Biobutanol separation using ionic liquids as a green solvent
	12.1 Introduction
	12.2 Butanol
		12.2.1 Background
		12.2.2 Characteristics
		12.2.3 Applications
		12.2.4 Production
		12.2.5 Separation
	12.3 Liquid–liquid extraction and ionic liquids
		12.3.1 Separation
		12.3.2 Liquid–liquid extraction
		12.3.3 Ionic liquids
	12.4 Butanol separation by ionic liquids
		12.4.1 Imidazolium-based ionic liquids
		12.4.2 Phosphonium-based ionic liquids
		12.4.3 Piperidinium-based ionic liquids
		12.4.4 Pyrrolidinium-based ionic liquids
		12.4.5 Morpholinium-based ionic liquids
		12.4.6 Ammonium-based ionic liquids
		12.4.7 Supported ionic liquid membrane
		12.4.8 Perstraction using ionic liquids
	12.5 Toxicity and biocompatibility of ionic liquids
		12.5.1 Biocompatibility
		12.5.2 Toxicity
	12.6 Recovery and reuse of ionic liquids
	12.7 Future perspectives
	12.8 Conclusion
	References
13 Synergistic prospects of microalgae after wastewater treatment to be used for biofuel production
	13.1 Introduction
	13.2 Appropriate selection methods for effective biofuel production
		13.2.1 Potential microalgae for biofuel production through wastewater treatment
		13.2.2 Selection of appropriate media for enhanced microalgal biomass and lipid yield
		13.2.3 Selection of wastewater for microalgal growth
		13.2.4 Selection of wastewater pretreatment
		13.2.5 Free cell versus immobilized cell
			13.2.5.1 Advantages of immobilization
	13.3 Types of microalgae cultivation
		13.3.1 High rate algal ponds
		13.3.2 Photobioreactor
			13.3.2.1 Tubular photobioreactor
			13.3.2.2 Airlift column photobioreactor
			13.3.2.3 Flat-plate photobioreactor
		13.3.3 Hybrid system
		13.3.4 Microalgae turf scrubber
	13.4 Harvesting microalgal biomass
		13.4.1 Chemical extraction
		13.4.2 Mechanical extraction
		13.4.3 Electrical extraction
		13.4.4 Biological method of extraction
	13.5 Biofuel production from wastewater using microalgae
		13.5.1 Biodiesel
		13.5.2 Bioethanol and biohydrogen
		13.5.3 Syngas
			13.5.3.1 Fischer–Tropsch
		13.5.4 Biomethane
		13.5.5 Jet fuel
	13.6 Greenhouse gas mitigation
	13.7 Future perspectives
	13.8 Conclusion
	References
14 Concurrent reduction of CO2 and generation of biofuels by electrified microbial systems—concepts and perspectives
	14.1 Introduction
		14.1.1 Electrode and possible effects on microbial electrosynthesis
		14.1.2 Membrane configurations
	14.2 Bacterial electrotrophs
	14.3 Mechanism of electron uptake
		14.3.1 Indirect extracellular electron transfer or mediator-dependent transfer
		14.3.2 Direct extracellular electron transfer or mediator-free transfer
	14.4 Carbon dioxide reduction and biofuels generation
	14.5 Challenges and future prospects
	14.6 Conclusion
	References
15 Challenges and opportunities in large-scale production of biodiesel
	15.1 Introduction
	15.2 Assessment from small-scale to large-scale production
		15.2.1 Supply chain and logistics
		15.2.2 Storage of oil seed
	15.3 Commercial-scale production of triglycerides
		15.3.1 Source of triglycerides
		15.3.2 Large scale oil production
			15.3.2.1 Extraction of oil
			15.3.2.2 Mechanical pressing
			15.3.2.3 Solvent extraction method
		15.3.3 Vegetable oil refining process
		15.3.4 Degumming
			15.3.4.1 Chemical methods
		15.3.5 Deacidification process
			15.3.5.1 Traditional alkali treatment methodology
			15.3.5.2 Physical deacidification
		15.3.6 Bleaching
		15.3.7 Deodorization process
	15.4 Large-scale production structure of biodiesel plant
		15.4.1 Refining process for biodiesel production
		15.4.2 Esterification process
		15.4.3 Transesterification process
		15.4.4 Pumps and pipelines used
		15.4.5 Reactors used
			15.4.5.1 Batch reactors
			15.4.5.2 Continuous stirred tank reactors
			15.4.5.3 Other reactors
				15.4.5.3.1 Plug flow reactor
			15.4.5.4 Microreactors
		15.4.6 Product separation
		15.4.7 Neutralization
		15.4.8 Methanol recovery
		15.4.9 Biodiesel purification
			15.4.9.1 Water washing process
			15.4.9.2 Dry washing
		15.4.10 Biodiesel drying
		15.4.11 Recovery of methanol
	15.5 Glycerol purification
		15.5.1 Free fatty acid treatment
	15.6 Wastewater treatment
		15.6.1 Generation of wastewater
		15.6.2 Significance of wastewater treatment method
		15.6.3 Physical methods
			15.6.3.1 Adsorption
			15.6.3.2 Acidification
			15.6.3.3 Coagulation
		15.6.4 Electrochemical method
			15.6.4.1 Electrocoagulation
			15.6.4.2 Hydrothermal electrolysis
		15.6.5 Biological methods
	15.7 Cost analysis of wastewater treatment
		15.7.1 Economic analysis of biodiesel production
	15.8 Conclusion
	References
16 Lipid-derived biofuel: production methodologies
	16.1 Introduction
	16.2 Properties of biodiesel
	16.3 Biodiesel production methodologies
		16.3.1 Direct use and blending
		16.3.2 Microemulsion
		16.3.3 Pyrolysis
			16.3.3.1 Pyrolysis process categorization
				16.3.3.1.1 Slow pyrolysis process
				16.3.3.1.2 Fast pyrolysis process
				16.3.3.1.3 Flash pyrolysis process
			16.3.3.2 Stages of pyrolysis process
				16.3.3.2.1 Elimination of biochar
				16.3.3.2.2 Product separation
			16.3.3.3 Reactors used for pyrolysis
	16.4 Transesterification process
		16.4.1 Parameters affecting transesterification process
			16.4.1.1 Effect of free fatty acid
			16.4.1.2 Effect of moisture content
			16.4.1.3 Concentration of catalyst
			16.4.1.4 Effect of oil-to-alcohol-molar ratio
			16.4.1.5 Effect of mixing intensity
			16.4.1.6 Reaction temperature
			16.4.1.7 Reaction time
			16.4.1.8 Effect of cosolvents
		16.4.2 Types of transesterification process
			16.4.2.1 Catalytic transesterification
				16.4.2.1.1 Acid catalysis
				16.4.2.1.2 Base catalysis
			16.4.2.2 Enzyme catalysts
			16.4.2.3 Ionic liquid catalysts
			16.4.2.4 Supercritical transesterification process
				16.4.2.4.1 Noncatalytic process
				16.4.2.4.2 Catalytic process
			16.4.2.5 Recent technology
				16.4.2.5.1 Microwave irradiation method
				16.4.2.5.2 Ultrasonication method
	16.5 Overview of production methods
	16.6 Conclusion
	References
17 Interesterification reaction of vegetable oil and alkyl acetate as alternative route for glycerol-free biodiesel synthesis
	17.1 Introduction
	17.2 Biodiesel
	17.3 Interesterification reaction
	17.4 Kinetic model of interesterification reaction
	17.5 Case study: kinetic study on the biodiesel synthesis from Jatropha (Jatropha curcas L.) with methyl acetate in the pre...
		17.5.1 Methods
		17.5.2 Kinetic model
		17.5.3 Characterization of Jatropha oil
		17.5.4 Effect of catalyst concentration
		17.5.5 Effect of Jatropha oil to methyl acetate molar ratio
		17.5.6 Effect of reaction time and temperature
		17.5.7 Kinetic study
	17.6 Conclusion
	Acknowledgment
	References
18 Recent advances of lipase-catalyzed greener production of biodiesel in organic reaction media: economic and sustainable ...
	18.1 Introduction
	18.2 Recent literature survey of lipase-catalyzed synthesis of biodiesel
	18.3 Reaction parameters
		18.3.1 Biocatalyst screening
		18.3.2 Effect of oil-to-alcohol mole ratio
		18.3.3 Effect of stepwise addition of alcohol
		18.3.4 Effect of solvent and cosolvent
		18.3.5 Effect of temperature
		18.3.6 Effect of water content
		18.3.7 Effect of biocatalyst amount
		18.3.8 Effect of mass transfer
		18.3.9 Effect of adsorbent
		18.3.10 Effect alcohol chain length
		18.3.11 Effect of feedstock (waste or fresh oils) from various sources
		18.3.12 Effect of recycle
	18.4 Economic and sustainable viewpoint
		18.4.1 Catalyst lipase and immobilization
		18.4.2 Use of waste feedstock
		18.4.3 Processing parameters and optimization
		18.4.4 Scale-up synthesis
		18.4.5 Greenness of the process
	18.5 Conclusion
	References
19 Efficient utilization of seed biomass and its by-product for the biodiesel production
	19.1 Introduction
	19.2 Second-generation feedstock for biodiesel production
		19.2.1 Advantages of nonedible oils
	19.3 Problems in the exploitation of nonedible oils
	19.4 Deoiled seed meal after oil extraction
		19.4.1 Sulfonation
		19.4.2 Carbonization followed by sulfonation
		19.4.3 Hydrothermal carbonization
		19.4.4 Pyrolyzation followed by sulfonation
	19.5 Seed cake as a catalyst for esterification process
	19.6 Factors influencing seed cake catalyst preparation
		19.6.1 Reusability of catalyst
	19.7 Characterization of catalyst
	19.8 Conclusion
	References
20 Catalytic pyrolysis for upgrading of biooil obtained from biomass
	20.1 Introduction
	20.2 Catalytic fast pyrolysis of biomass
		20.2.1 Advantages of catalytic pyrolysis
	20.3 Commercial-scale pyrolysis plant
	20.4 Types of catalysts used in pyrolysis
		20.4.1 Zeolites
			20.4.1.1 Zeolite Socony Mobil–5 catalyst
		20.4.2 Mesoporous catalyst
	20.5 Chemical reactions in catalytic fast pyrolysis
		20.5.1 Deoxygenation
		20.5.2 Cracking
		20.5.3 Dehydration
		20.5.4 Decarboxylation
	20.6 Reactors for catalytic pyrolysis
	20.7 Process parameters
		20.7.1 Temperature
		20.7.2 Ratio of biomass to catalyst
		20.7.3 Catalyst contact time
		20.7.4 Vapor residence time
	20.8 Challenges and recommendations
	20.9 Future perspectives
	20.10 Conclusion
	Acknowledgments
	References
21 Recent trends in the pyrolysis and gasification of lignocellulosic biomass
	21.1 Introduction
		21.1.1 Background
		21.1.2 Potential feedstocks for pyrolysis and gasification
			21.1.2.1 Municipal solid waste
			21.1.2.2 Digestate
			21.1.2.3 Forestry residue
			21.1.2.4 Agricultural residue
		21.1.3 Pretreatment of lignocellulosic biomass
	21.2 Pyrolysis
		21.2.1 Types of pyrolysis
			21.2.1.1 Slow pyrolysis
			21.2.1.2 Intermediate pyrolysis
			21.2.1.3 Fast pyrolysis
			21.2.1.4 Flash pyrolysis
		21.2.2 Reactor configuration
			21.2.2.1 Fixed-bed reactor
			21.2.2.2 Fluidized-bed reactor
			21.2.2.3 Ablative reactor
			21.2.2.4 Rotating cone
			21.2.2.5 Auger/screw reactor
			21.2.2.6 Pyroformer
			21.2.2.7 Thermo-catalytic reforming
		21.2.3 Factors affecting pyrolysis products
			21.2.3.1 Impact of biomass type and particle size
			21.2.3.2 Impact of temperature and residence time in pyrolysis
			21.2.3.3 Impact of heating rate
		21.2.4 Recent developments in pyrolysis
			21.2.4.1 Thermo-catalytic reforming
			21.2.4.2 Catalytic fast pyrolysis
			21.2.4.3 Microwave pyrolysis
		21.2.5 Current status and challenges of pyrolysis
			21.2.5.1 Quality of biooil
			21.2.5.2 Feedstock processing requirements for pyrolysis
	21.3 Gasification
		21.3.1 Gasification theory
			21.3.1.1 Feedstock parameters
				21.3.1.1.1 Moisture content
				21.3.1.1.2 Particle size
				21.3.1.1.3 Ash content
			21.3.1.2 Gasification parameters
				21.3.1.2.1 Bed material
				21.3.1.2.2 Operating pressure
				21.3.1.2.3 Gasification agent
				21.3.1.2.4 Equivalence ratio
				21.3.1.2.5 Steam-to-biomass ratio
		21.3.2 Gasifier types
			21.3.2.1 Fixed-bed gasifier
				21.3.2.1.1 Downdraft gasifier
				21.3.2.1.2 Updraft gasifier
				21.3.2.1.3 Cross-draft gasifier
			21.3.2.2 Fluidized-bed gasifier
				21.3.2.2.1 Bubbling bed gasifier
				21.3.2.2.2 Circulating bed gasifier
			21.3.2.3 Other types of gasifiers
				21.3.2.3.1 Entrained flow gasifier
				21.3.2.3.2 Dual fluidized-bed gasifier
				21.3.2.3.3 Plasma gasifier
				21.3.2.3.4 Rotary kiln gasifier
		21.3.3 Current status and challenges of gasification
			21.3.3.1 Bed agglomeration
			21.3.3.2 Product gas cleaning
	21.4 Future of pyrolysis and gasification
		21.4.1 Biomass-based hydrogen
		21.4.2 Bioethanol
	21.5 Conclusion
	References
22 Experimental investigation of performance of bio diesel with different blends in diesel engine
	22.1 Introduction
		22.1.1 Need for alternative green fuel
		22.1.2 Cashew nut shell liquid
		22.1.3 Cardanol
	22.2 Experimental section
		22.2.1 Materials
		22.2.2 Measurements
			22.2.2.1 Densitometer
			22.2.2.2 Bomb calorimeter
			22.2.2.3 Kirloskar engine TV1 specifications
		22.2.3 Blending of auxiliaries with cardanol
			22.2.3.1 Physical and chemical characterization of cardanol
			22.2.3.2 Emission and engine performance of compression ignition engine fueled with green fuel
		22.2.4 Engine performance analysis
			22.2.4.1 Maximum load calculation
			22.2.4.2 Brake power
			22.2.4.3 Indicated power
			22.2.4.4 Frictional power
			22.2.4.5 Total fuel consumption
			22.2.4.6 Specific fuel consumption
			22.2.4.7 Indicated mean effective pressure
			22.2.4.8 Brake mean effective pressure
			22.2.4.9 Indicated thermal efficiency
			22.2.4.10 Brake thermal efficiency
			22.2.4.11 Mechanical efficiency
			22.2.4.12 Smoke opacity
	22.3 Results and discussion
		22.3.1 Density of pure components
		22.3.2 Performance and emission characteristics of alternative green fuel
			22.3.2.1 Variation of break thermal efficiency
			22.3.2.2 Variation of specific fuel consumption
			22.3.2.3 Variation of mechanical efficiency
			22.3.2.4 Variation of air-fuel ratio
			22.3.2.5 Variation of exhaust gas temperature
			22.3.2.6 Variation of carbon monoxide emission
			22.3.2.7 Variation of hydrocarbon emission
			22.3.2.8 Variation of oxides of nitrogen emission
			22.3.2.9 Variation of carbon dioxide emission
			22.3.2.10 Variation of smoke opacity
	22.4 Conclusion
	References
23 Technoeconomic evaluation of 2G ethanol production with coproducts from rice straw
	23.1 Introduction
	23.2 Process description of rice straw to ethanol and coproducts
		23.2.1 Pretreatment of rice straw
		23.2.2 Enzymatic hydrolysis
		23.2.3 Glucose (C6) fermentation
		23.2.4 Xylose (C5) fermentation
		23.2.5 Coproducts from rice straw
			23.2.5.1 Furfural production
			23.2.5.2 Lignin conversion
	23.3 Process design
		23.3.1 Various cases
		23.3.2 Simulation methodology
	23.4 Results and discussion
		23.4.1 Material flow
		23.4.2 Economic analysis
		23.4.3 Sensitivity analysis
	23.5 Future perspective
	23.6 Conclusion
	References
24 Technoeconomic analysis of biodiesel production using noncatalytic transesterification
	24.1 Introduction
	24.2 Characteristics of supercritical methanol
	24.3 Reaction kinetics of transesterification
	24.4 Upshots of operating parameters on biodiesel using SCM
		24.4.1 Temperature
		24.4.2 Pressure
		24.4.3 Alcohol/oil ratio
		24.4.4 Feedstock handling
	24.5 Technoeconomic analysis of SCM method
		24.5.1 Case study
		24.5.2 Process results
		24.5.3 Economic review
	24.6 Conclusion
	References
25 Techno-economic analysis of biodiesel production from nonedible biooil using catalytic transesterification
	25.1 Introduction
	25.2 Nonedible source for biodiesel production
		25.2.1 Gossypium
		25.2.2 Jatropha curcas
		25.2.3 Simmondsia chinensis
		25.2.4 Millettia pinnata
		25.2.5 Linum usitatissimum
		25.2.6 Madhuca longifolia
		25.2.7 Azadirachta indica
		25.2.8 Hevea brasiliensis
		25.2.9 Nicotiana tabacum
		25.2.10 Callophyllum inophyllum
	25.3 Catalyst for biodiesel production
		25.3.1 Homogeneous Catalyst
		25.3.2 Heterogeneous Catalyst
	25.4 Techno-economic analysis
		25.4.1 Steps involved in techno-economic analysis
			25.4.1.1 Process design
			25.4.1.2 Mass and energy balance
			25.4.1.3 Cost estimation
			25.4.1.4 Profitability analysis
			25.4.1.5 Sensitivity analysis
		25.4.2 Economic factors
			25.4.2.1 Capital investment
			25.4.2.2 Operating cost
			25.4.2.3 Revenue
			25.4.2.4 Gross margin
			25.4.2.5 Return on investment
			25.4.2.6 Payback period
			25.4.2.7 Internal rate of return
			25.4.2.8 Net present value
	25.5 Techno-economic analysis of biodiesel production
	25.6 Conclusion
	Reference
26 Technoeconomic analysis of biofuel production from marine algae
	26.1 Introduction
	26.2 Macroalgae production
		26.2.1 Cultivation
			26.2.1.1 Hatchery production
			26.2.1.2 Onshore growing methods
		26.2.2 Harvesting
		26.2.3 Postharvesting
			26.2.3.1 Removing foreign objects
			26.2.3.2 Milling
			26.2.3.3 Dewatering and drying
	26.3 Extraction of oil from macroalgae for biodiesel production
		26.3.1 Pretreatment of algal biomass
		26.3.2 Soxhlet extraction
		26.3.3 Factors affecting extraction of algal oil
			26.3.3.1 Effect of particle size
			26.3.3.2 Effect of biomass moisture
			26.3.3.3 Effect of extraction temperature
			26.3.3.4 Effect of time
			26.3.3.5 Effect of solvent-to-biomass ratio
			26.3.3.6 Effect of solvent
			26.3.3.7 Effect of solvent flow
	26.4 Production of biodiesel
		26.4.1 Transesterification of algal oil
			26.4.1.1 Homogeneous catalysis
			26.4.1.2 Heterogeneous catalysis
			26.4.1.3 Kinetics of biodiesel production from algal oil
	26.5 Production of biogas from macroalgae
		26.5.1 Anaerobic digestion
	26.6 Production of bioethanol from marine macroalgae
	26.7 Technoeconomic analysis
		26.7.1 Hatchery and grow-out systems
		26.7.2 Drying systems
		26.7.3 Transportation systems
		26.7.4 Algal oil extraction systems
		26.7.5 Transesterification of algal oil
		26.7.6 Fermentation
		26.7.7 Technoeconomic analysis of biofuel from macroalgae
	26.8 Conclusion
	References
27 Techno-economic assessment of biofuel production using thermochemical pathways
	27.1 Introduction
	27.2 Thermochemical pathways of biofuel production
		27.2.1 Torrefaction
		27.2.2 Hydrothermal liquefaction
		27.2.3 Pyrolysis
		27.2.4 Gasification
	27.3 Techno-economic assessment of biofuels using thermochemical methods
		27.3.1 Methodological framework of techno-economic assessment
		27.3.2 Overview of the techno-economic assessment studies of biofuel production using thermo-chemical pathways
	27.4 Challenges, progress, opportunities, and future perspectives
	27.5 Conclusion
	References
28 Modeling and technoeconomic analysis of biogas production from waste food
	28.1 Introduction
	28.2 Materials and methods
	28.3 Technoeconomic analysis
	28.4 Results and discussion
	28.5 Economic analysis results
	28.6 Conclusion
	References
29 Techno-economic and environmental impact analysis of biofuels produced from microalgal biomass
	29.1 Introduction
	29.2 Technological assessment
		29.2.1 Influential factors for biodiesel production
		29.2.2 Algae cultivation
			29.2.2.1 Optimum parameters
			29.2.2.2 Mode of cultivation
		29.2.3 Biomass pretreatment and extraction
		29.2.4 Harvesting of algal culture
			29.2.4.1 Physical and chemical methods for harvesting
		29.2.5 Extraction
		29.2.6 Transesterification
		29.2.7 Scale-up
	29.3 Economic assessment
		29.3.1 Cost analysis
		29.3.2 Techno-economic analysis
	29.4 Environmental impact assessment
		29.4.1 Microalgal biomass
			29.4.1.1 Water
			29.4.1.2 Land
			29.4.1.3 Nutrients
			29.4.1.4 Atmospheric emissions
	29.5 Major challenges associated with biofuels production from microalgal biomass
	29.6 Conclusions
	References
30 Computer-aided environmental and technoeconomic analyses as tools for designing biorefineries under the circular bioecon...
	30.1 Introduction
	30.2 Circular bioeconomy framework towards biorefinery design
	30.3 Computer-aided environmental analysis of biorefineries
	30.4 Computer-aided technoeconomic analysis of biorefineries
	30.5 Case study for the production of ethanol and succinic acid under circular economy
	30.6 Environmental assessment of ethanol and succinic acid production under circular bioeconomy
	30.7 Technoeconomic assessment of ethanol and succinic acid production under circular bioeconomy
	30.8 Conclusions
	References
31 Environmental impact analysis of biofuels and bioenergy: a globalperspective
	31.1 Introduction
	31.2 Biofuel: a sustainable fuel for future
	31.3 Bioenergy: a sustainable fuel for future
	31.4 Resource availability for biofuel production
	31.5 Impact of biomass on environment
	31.6 Impact of combustion efficiency in environment
	31.7 Impact of biofuel production on biodiversity
	31.8 Environmental impacts on biomass pretreatment
	31.9 Managing ecosystems and its services
	31.10 Regulations related to environmental sustainability
	31.11 Impact of biofuel production on water quality
	31.12 Conclusion
	References
32 Environmental impacts of biofuels and their blends: a case study on waste vegetable oil-derived biofuel blends
	32.1 Introduction
	32.2 Environmental impacts of biofuels
		32.2.1 Life cycle assessment methodology
		32.2.2 Environmental impact categories
	32.3 Environmental impacts of waste vegetable oil-based biofuels: a case study
		32.3.1 Methods
		32.3.2 Physical properties of various test fuels
		32.3.3 Engine performance and emission analysis
		32.3.4 Environmental impacts of various waste vegetable oil-based biofuels
			32.3.4.1 Climate change
			32.3.4.2 Terrestrial acidification
			32.3.4.3 Eutrophication in water bodies
			32.3.4.4 Environmental eco-toxicity
			32.3.4.5 Particulate matter formation and ozone depletion
			32.3.4.6 Resource depletion
	32.4 Conclusion
	Acknowledgments
	References
33 Solid biofuel production, environmental impact, and technoeconomic analysis
	33.1 Introduction
	33.2 Importance of solid fuel
	33.3 Types of solid biofuels
		33.3.1 Wood-based fuel
		33.3.2 Coal and coke
		33.3.3 Peat
	33.4 Processes for the usage of solid biofuel
		33.4.1 Anaerobic digestion
		33.4.2 Saccharification and fermentation
		33.4.3 Torrefaction
		33.4.4 Liquefaction
		33.4.5 Gasification
		33.4.6 Combustion
	33.5 Environmental impact of solid biofuels
	33.6 Technoeconomic analysis of solid biofuel
	33.7 Conclusions
	References
Index




نظرات کاربران