دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Yashvir Singh, Prateek Negi, Wei Hsin Chen سری: River Publishers Series in Energy Sustainability and Efficiency ISBN (شابک) : 8770226342, 9788770226349 ناشر: River Publishers سال نشر: 2023 تعداد صفحات: 248 [249] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Biofuel Technologies for a Sustainable Future: India and Beyond به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فن آوری های سوخت زیستی برای آینده ای پایدار: هند و فراتر از آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface List of Figures List of Tables List of Contributors List of Abbreviations Chapter 1: Current Scenario of Renewable Energy in India and Its Possibilities in the Future 1.1: Introduction 1.2: RenewableEnergy 1.2.1: Biomass 1.2.2: Biofuels 1.2.3: Small Hydro 1.2.4: Solar Energy 1.2.4.1: Grid-connected 1.2.4.2: Off-grid solar PV program 1.2.5: Wind Energy 1.2.6: Wasteto Energy 1.2.7: Geothermal Energy 1.3: Future of Renewable Energyin India 1.4: Policy Gaps and Opportunities 1.5: Conclusion References Chapter 2: Application of Green Nanomaterials for Sustainable Energy Systems: A Review of the Current Status 2.1: Introduction 2.2: Use of Nanotechnology for Improved Energy Efficiency 2.3: Nanomaterials and Sustainability Issues 2.4: Green Nanomaterials Enhancing the Sustainability in Energy Applications 2.4.1: Green Reagents Used During Nanoparticle Synthesis 2.4.2: Green Processes Involved in Nanoparticle Synthesis 2.4.3: Biomass Based Green Nanotechnology in Energy Devices 2.5: Conclusion References Chapter 3: Production of Energy from Biowaste: An Overview of the Underlying Biological Technologies 3.1: Introduction 3.2: Current Technologies for Energy Generation from Biowaste 3.3: Anaerobic Digestion for Generation of Biogas 3.4: Microbial Fermentation for Bioethanol Generation 3.5: Microbial Fermentation for Bio-Hydrogen Generation 3.6: Transesterification for Biodiesel Generation 3.7: Discussion on Potential Challenges and Solutions for Biofuel Generation 3.8: Conclusion References Chapter 4: Coconut Shell-Based Activated Carbon Supported Metal Oxides in Catalytic Cracking Activity 4.1: Introduction 4.2: Experimental Procedures 4.2.1: Material 4.2.2: Catalyst Preparation 4.2.3: Catalytic Cracking of Waste Cooking Oil 4.2.4: Product Analysis 4.3: Results and Discussion 4.3.1: Properties of Waste Cooking Oil 4.3.2: Catalytic Cracking of Waste Cooking Oil 4.3.2.1: Activated carbon-based catalysts 4.3.2.2: Activated carbon supported metal oxides 4.3.3: Characterization of Activated Carbon Supported Metal Catalysts 4.3.3.1: X-ray diffraction (XRD) analysis 4.3.3.2: Scanning electron microscopy (SEM) 4.3.3.3: Temperature programmed desorption (TPD) 4.3.3.4: Catalyst stability test 4.4: Conclusion References Chapter 5: Biofuels – Are they a Sustainable Alternative? 5.1: Introduction 5.2: Abstraction of Biofuels from Food 5.2.1: Water Resources 5.2.1.1: Availability of water 5.2.1.2: Stored water assets 5.3: Water Usage 5.3.1: Usage of Water in the Growing Crop 5.4: Biofuels and their Energy Content [31] 5.5: Is Biomass is a form of Solar Energy [31] 5.6: Conclusion References Chapter 6: Current Research Trends on the Utilization of Mono and Hybrid Nano-Fluids for Solar Energy Applications 6.1: Introduction 6.2: Nano-Fluids as Smart Fluids 6.2.1: Hybrid Nano-Fluid 6.3: Utilization of Mono/Hybrid Nano-Fluids in Solar Energy 6.3.1: Solar Collectors (SCs) 6.3.2: Photovoltaic Thermal (PV/T) System 6.3.3: Solar Desalination 6.4: Challenges with Nano-Fluid-Based Solar Technologies 6.5: Conclusions and Future Outlook References Chapter 7: Modification and Application of Vegetable Oils for Biofuels 7.1: Introduction 7.2: History of Vegetable Oil as a Fuel 7.3: Transesterification of Vegetable Oil 7.4: Biodiesel Feedstock 7.4.1: Palm Oil 7.4.2: Sunflower Oil 7.4.3: Soybean Oil 7.4.4: Rapeseed Oil/Canola Oil 7.4.5: Rice Bran Oil 7.4.6: Jatropha 7.4.7: Used Cooking Oil 7.5: Biodiesel 7.6: The Current Senior of Biodiesel Derive from Vegetable Oil 7.7: Conclusion References Chapter 8: A Green Automotive Industry for a Sustainable Future 8.1: Introduction 8.2: Scope of Development in Conventional Internal Combustion (IC) Engine 8.2.1: Possibility of Improvement in Short Term 8.2.1.1: Improvement in engine construction 8.2.1.2: Exhaust treatment systems 8.2.1.3: Changes in fuel for the IC engines 8.2.2: Possibility of Improvement in Long Term 8.2.2.1: Gasoline compression ignition (GCI) 8.2.2.2: Reactivity controlled compression ignition (RCCI) system 8.2.2.3: Octane on demand (OOD) 8.2.2.4: Opposed piston engines 8.3: Green Engine Technology 8.3.1: Technical features of green engine 8.3.2: Working of Green Engine 8.4: Hybrid Vehicles (HVs) 8.4.1: The Definition of Hybrid Vehicles (HVs) 8.4.2: Types of Hybrid Vehicles 8.4.2.1: Hybrid electric vehicles (HEVs) 8.4.2.2: Hybrid solar vehicle (HSVs) 8.4.2.3: Plug-in-hybrid electric vehicle (PHEVs) 8.4.3: Need HVs to Replace Conventional ICs and EVs-Why & Why Not?? 8.5: Hydrogen Fuel IC Engines (H2-ICEs) 8.5.1: Fundamental of H2-ICEs 8.5.2: Types of Advanced H2-ICEs 8.5.2.1: Pressure Based H2ICE 8.5.2.2: Liquid-hydrogen-fueled internal combustion engine (l-H2-ICEs) 8.5.2.3: Direct-injection hydrogen-fueled internal combustion engine (DI-H2ICE) 8.5.2.4: H2-ICE-electric hybrid 8.6: Conclusion References Chapter 9: Thermochemical Conversions of Contaminated Biomass for Sustainable Phytoremediation 9.1: Introduction 9.2: Biomass Fuels Contaminated with Heavy Metals 9.3: Combustion 9.3.1: Fundamentals of Solid Biomass Combustion 9.3.2: Fluidized Bed Combustion for Solid Biomass Fuels 9.3.3: Ash Formation and Fate of Heavy Metals During Combustion of Solid Fuels 9.3.4: Combustion Relevant for phytoremediation Plant Biomass Contaminated with Heavy Metals 9.4: Gasification 9.4.1: Gasification Fundamentals 9.4.2: Gasification Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 9.5: Pyrolysis 9.5.1: Pyrolysis Fundamentals 9.5.2: Pyrolysis Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 9.6: Hydrothermal Processing 9.6.1: Fundamentals of Hydrothermal Treatments of Biomass 9.6.2: Hydrothermal Treatments Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 9.7: Conclusionand Perspective References Index About the Editors