دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.] نویسندگان: David Rubenstein, Wei Yin, Mary D. Frame سری: ISBN (شابک) : 012818034X, 9780128180341 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 632 [604] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Biofluid Mechanics: An Introduction to Fluid Mechanics, Macrocirculation, and Microcirculation (Biomedical Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک سیالات زیستی: مقدمه ای بر مکانیک سیالات، ماکروسیرکولاسیون و میکروسیرکولاسیون (مهندسی زیست پزشکی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مکانیک سیالات زیستی: مقدمهای بر مکانیک سیالات، ماکروسیرکولاسیون و میکروسیرکولاسیون، ویرایش سوم نشان میدهد که چگونه اصول مکانیک سیالات را میتوان نه تنها برای گردش خون، بلکه برای جریان هوا از طریق ریهها و مفاصل به کار برد. روانکاری، حرکت مایع داخل چشمی، حمل و نقل کلیوی، و سایر گردش های تخصصی. این نسخه جدید شامل مشکلات تکالیف جدید و نمونه های کار شده، از جمله مثال های مبتنی بر MATLAB است. علاوه بر این، مطالب جدیدی در مورد موضوعات مرتبط مانند Womersley و Oscillatory Flow اضافه شده است. با توجه به موضوعات پیشرفته در متن که اکنون برای راحتی مدرس مشخص شده است، این کتاب به ویژه برای دوره های ارشد و فارغ التحصیل در زمینه بیو سیالات مناسب است.
Biofluid Mechanics: An Introduction to Fluid Mechanics, Macrocirculation, and Microcirculation, Third Edition shows how fluid mechanics principles can be applied not only to blood circulation, but also to air flow through the lungs, joint lubrication, intraocular fluid movement, renal transport, and other specialty circulations. This new edition contains new homework problems and worked examples, including MATLAB-based examples. In addition, new content has been added on such relevant topics as Womersley and Oscillatory Flows. With advanced topics in the text now denoted for instructor convenience, this book is particularly suitable for both senior and graduate-level courses in biofluids.
BIOFLUID MECHANICS Copyright Quotes on Engineering, Science, Research, and Related Matters Preface Ancillaries Acknowledgments 1. Introduction 1.1 Note to students about this textbook 1.2 Biomedical engineering 1.3 Scope of fluid mechanics 1.4 Scope of biofluid mechanics 1.5 Dimensions and units 1.6 Salient biofluid mechanics dimensionless numbers Summary Reference 2. Fundamentals of fluid mechanics 2.1 Fluid mechanics introduction 2.2 Fundamental fluid mechanics equations 2.3 Analysis methods 2.4 Fluid as a continuum 2.5 Elemental stress and pressure 2.6 Kinematics: Velocity, acceleration, rotation, and deformation 2.7 Viscosity 2.8 Fluid motions 2.9 Two-phase flows 2.10 Changes in the fundamental relationships on the microscale 2.11 Fluid structure interaction 2.12 Introduction to turbulent flows and the relationship of turbulence to biological systems Summary References 3. Conservation laws 3.1 Fluid statics equations 3.2 Buoyancy 3.3 Conservation of mass 3.4 Conservation of momentum 3.5 Momentum equation with acceleration 3.6 The first and second laws of thermodynamics 3.7 The Navier–Stokes equations 3.8 Bernoulli equation Summary Reference 4. Introduction to heat transfer 4.1 Thermodynamics and engineering heat transfer 4.2 Heat and energy considerations 4.3 Energy transfer and balances 4.4 Mechanisms of heat transfer 4.5 General heat transfer equations Summary References 5. The heart 5.1 Cardiac physiology 5.2 Cardiac conduction system and electrocardiogram 5.3 The cardiac cycle 5.4 Heart motion 5.5 Heart valve function 5.6 Heart valve dynamics 5.7 Disease conditions 5.7.1 Coronary artery disease 5.7.2 Myocardial infarction 5.7.3 Heart valve diseases 5.7.4 Congenital heart diseases Summary References 6. Blood flow in arteries and veins 6.1 Arterial system physiology 6.2 Venous system physiology 6.3 Blood cells and plasma 6.4 Blood rheology 6.5 Pressure, flow, and resistance: arterial system 6.6 Pressure, flow, and resistance: venous system 6.7 Windkessel model for blood flow∗ 6.8 Wave propagation in arterial circulation 6.9 Flow separation at bifurcations and at walls 6.10 Flow through tapering and curved channels 6.11 Pulsatile flow and turbulence 6.12 Womersley flow and solution 6.13 Oscillatory blood flow and oscillatory shear index 6.14 Disease conditions 6.14.1 Arteriosclerosis, stroke, and high blood pressure 6.14.2 Platelet activation and thromboembolism 6.14.3 Aneurysm Summary References 7. Microvascular beds 7.1 Microcirculation physiology 7.2 Endothelial cell and smooth muscle cell physiology 7.3 Local control of blood flow 7.4 Pressure distribution throughout the microvascular beds 7.5 Velocity distribution throughout the microvascular beds 7.6 Interstitial space pressure and velocity 7.7 Hematocrit/Fahraeus–Lindquist effect/Fahraeus effect 7.8 Plug flow in capillaries 7.9 Characteristics of two-phase flow 7.10 Interactions between cells and the vessel wall 7.11 Disease conditions 7.11.1 Shock and tissue necrosis 7.11.2 Edema Summary References 8. Mass transport and heat transfer in the microcirculation 8.1 Gas diffusion 8.2 Glucose transport 8.3 Vascular permeability 8.4 Energy considerations 8.5 Transport through porous media 8.6 Microcirculatory heat transfer 8.7 Cell transfer during inflammation and white blood cell rolling and sticking Summary References 9. The lymphatic system 9.1 Lymphatic physiology 9.2 Lymph formation 9.3 Flow through the lymphatic system 9.4 Disease conditions 9.4.1 Cancer metastasis by the lymphatic system 9.4.2 Lymphedema Summary References 10. Flow in the lungs 10.1 Lung physiology 10.2 Elasticity of the lung blood vessels and alveoli 10.3 Pressure-volume relationship for airflow in the lungs 10.4 Cardiopulmonary flows: ventilation perfusion matching 10.5 Oxygen and carbon dioxide diffusion 10.6 Oxygen and carbon dioxide transport in the blood 10.7 Compressible fluid flow 10.8 Disease conditions 10.8.1 Emphysema 10.8.2 Asthma 10.8.3 Tuberculosis Summary References 11. Intraocular fluid flow 11.1 Eye physiology 11.2 Eye blood supply, circulation, and drainage 11.3 Aqueous humor formation 11.4 Aquaporins 11.5 Flow of aqueous humor 11.6 Intraocular pressure 11.7 Disease conditions 11.7.1 Glaucoma 11.7.2 Cataracts Summary References 12. Lubrication of joints and transport in bone 12.1 Skeletal physiology 12.2 Bone vascular anatomy and fluid phases 12.3 Formation of synovial fluid 12.4 Synovial fluid flow 12.5 Mechanical forces within joints 12.6 Transport of molecules in bone 12.7 Disease conditions 12.7.1 Synovitis 12.7.2 Bursitis and tenosynovitis Summary References 13. Flow through the kidney 13.1 Kidney physiology 13.2 Distribution of blood in the kidney 13.3 Glomerular filtration and dynamics 13.4 Tubule reabsorption and secretion 13.5 Single nephron filtration rate 13.6 Peritubular capillary flow 13.7 Sodium balance and transport of important molecules 13.8 Autoregulation of kidney blood flow 13.9 Compartmental analysis for urine formation 13.10 Extracorporeal flows: dialysis 13.11 Disease conditions 13.11.1 Renal calculi 13.11.2 Kidney disease Summary References 14. Splanchnic circulation: Liver and spleen 14.1 Liver and spleen physiology 14.2 Hepatic and splenic blood flow 14.3 Hepatic and splenic microcirculation 14.4 Storage and release of blood in the liver 14.5 Active and passive components of the splanchnic circulation 14.6 Innervation of the spleen 14.7 Disease conditions 14.7.1 Hepatitis 14.7.2 Alcoholic and fatty liver disease 14.7.3 Splenomegaly Summary References 15. In silico biofluid mechanics 15.1 Computational fluid dynamics 15.2 Fluid structure interaction modeling 15.3 Buckingham Pi Theorem and dynamic similarity 15.4 Current state of the art for biofluid mechanics in silico research 15.5 Future directions of biofluid mechanics in silico research Summary References 16. In vitro biofluid mechanics 16.1 Particle imaging velocimetry 16.2 Laser Doppler velocimetry 16.3 Flow chambers: parallel plate and cone-and-plate viscometry 16.4 Lab-on-a-chip and lithography 16.5 Current state of the art for biofluid mechanics in vitro research 16.6 Future directions of biofluid mechanics in vitro research Summary References 17. In vivo biofluid mechanics 17.1 Live animal preparations 17.2 Doppler ultrasound 17.3 Phase contrast magnetic resonance imaging 17.4 Review of other techniques 17.5 Current state of the art for biofluid mechanics in vivo research 17.6 Future directions of biofluid mechanics in vivo research Summary References Further readings Biomedical Engineering/Biomechanics Cell Biology/Anatomy and Physiology Fluid Mechanics/Heat Transfer Solid Mechanics/Statics and Dynamics Index A B C D E F G H I J K L M N O P Q R S T U V W Y Z