دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Munir Ozturk (editor), Dilfuza Egamberdieva (editor), Milica Pešić (editor) سری: ISBN (شابک) : 012819541X, 9780128195413 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 571 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 27 مگابایت
در صورت تبدیل فایل کتاب Biodiversity and Biomedicine: Our Future به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تنوع زیستی و پزشکی زیستی: آینده ما نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تنوع زیستی و پزشکی زیستی: آینده ما دیدگاه جدیدی در مورد گونه های جانوری، گیاهی و قارچی زمین به عنوان منابع حیاتی برای درمان های سلامت انسان ارائه می دهد. در حالی که بیش از 10 میلیون گونه مختلف روی کره زمین وجود دارد، تنها 2 میلیون گونه کشف و نامگذاری شده است. این کتاب راههای مدرن برای ترکیب گونههای زمین در شیوههای زیست پزشکی را شناسایی میکند و بر نیاز به حفاظت از تنوع زیستی تأکید میکند.
این کتاب که توسط کارشناسان برجسته تنوع زیستی و زیست پزشکی نوشته شده است، با بینش های جدیدی در مورد مزایای ترکیبات فعال بیولوژیکی موجود در قارچ ها و گیاهان، از جمله فصلی در مورد استفاده از میوه های وحشی به عنوان یک گزینه درمانی، آغاز می شود. این کتاب در ادامه به نقش حیوانات، مانند دوزیستان و خزندگان، و اینکه چگونه حضور تهدیدآمیز این گونهها برای حفظ تنوع زیستی باید معکوس شود، میپردازد. همچنین ارگانیسمهای دریایی، از جمله گیاهان، حیوانات، و میکروبها را بهعنوان ضروری در کمک به سلامت انسان مورد بحث قرار میدهد.
تنوع زیستی و زیستپزشکی: آینده ما منبعی حیاتی برای محققان و پزشکان است. متخصص در مطالعات تنوع زیستی و حفاظت. دانشآموزان طب طبیعی و حفاظت از زیستشناختی نیز این موضوع را برای یادگیری با غنیترین جوامع زیستی جهان و تنوع مولکولی گونههای مختلف مفید خواهند یافت.
Biodiversity and Biomedicine: Our Future provides a new outlook on Earth’s animal, plant, and fungi species as vital sources for human health treatments. While there are over 10 million various species on the planet, only 2 million have been discovered and named. This book identifies modern ways to incorporate Earth’s species into biomedical practices and emphasizes the need for biodiversity conservation.
Written by leading biodiversity and biomedical experts, the book begins with new insights on the benefits of biologically active compounds found in fungi and plants, including a chapter on the use of wild fruits as a treatment option. The book goes on to discuss the roles of animals, such as amphibians and reptiles, and how the threatened presence of these species must be reversed to conserve biodiversity. It also discusses marine organisms, including plants, animals, and microbes, as essential in contributing to human health.
Biodiversity and Biomedicine: Our Future is a vital source for researchers and practitioners specializing in biodiversity and conservation studies. Students in natural medicine and biological conservation will also find this useful to learn of the world’s most bio-rich communities and the molecular diversity of various species.
Cover Biodiversity and Biomedicine Copyright Contents List of Contributors Foreword Preface Acknowledgment 1 Plant microbiome: source for biologically active compounds 1.1 Introduction 1.2 Diversity of endophytic bacteria 1.3 Biological activity of endophytic microbes 1.4 Conclusions References 2 Chemodiversity in natural plant populations as a base for biodiversity conservation 2.1 Biodiversity 2.2 Biodiversity indicators 2.3 Biodiversity and biogeography 2.4 Importance of populations for biodiversity 2.5 Biodiversity and chemodiversity 2.6 Plant chemodiversity 2.7 Chemodiversity—analytical approaches 2.8 Bioprospecting 2.9 Plant biodiversity and biomedicine 2.10 Targeted plant studies in the discovery of potential new drug candidates 2.11 Balkan Peninsula—geographic and biological diversity 2.12 Research on plant population chemodiversity in the Balkans 2.13 Biomedical importance of population chemodiversity research 2.14 Chemodiversity as a base for biodiversity conservation References 3 Harnessing the potential of plant biodiversity in health and medicine: opportunities and challenges 3.1 Introduction 3.2 Medicinal plants—a historical perspective to contemporary uses 3.3 Current status of higher plants in drug discovery 3.4 New prospects in drug discovery from plants 3.5 Current context of barriers 3.6 Conclusion: approaches to circumventing the barriers and challenges Acknowledgements Disclaimer Funding References 4 Biomining fungal endophytes from tropical plants and seaweeds for drug discovery 4.1 Introduction 4.2 Endophytic fungi from terrestrial plants 4.3 Endophytic fungi from the Pandanaceae 4.4 Endophytic fungi from estuarine and marine plants 4.5 Endophytic fungi from seaweeds 4.6 Emerging techniques for optimizing the metabolic potential of fungal endophytes 4.7 Concluding remarks 4.8 Acknowledgments References Further reading 5 Biomedicine developments based on marine biodiversity: present and future 5.1 Marine biodiversity 5.2 Threats to biodiversity 5.3 Marine biomedicine 5.4 Conclusions References 6 Superbugs, silver bullets, and new battlefields 6.1 Introduction 6.2 Antibiotics and resistance 6.3 Drug resistance and tolerance 6.4 Biofilms and resistance 6.4.1 Biofilm and superbugs 6.4.2 Biofilm on indwelling medical devices 6.5 Spread of Resistance 6.5.1 Tools and Mechanisms 6.6 Bacterial social interactions’ influence on drug resistance 6.6.1 Bacterial persistence 6.6.2 Bacterial population dynamics 6.7 Alternative therapeutic approaches 6.7.1 Identification of new targets 6.7.2 Bacteriophage cocktails 6.7.3 Phage lysin enzymes 6.7.4 Vaccines 6.7.5 Antimicrobial nanoparticles 6.7.6 Thinking outside the box 6.8 Conclusion References Further Reading 7 The benefits of active substances in amphibians and reptiles and the jeopardy of losing those species forever 7.1 Introduction 7.2 Amphibians 7.2.1 Secretions of the anuran skin 7.2.2 Amphibian species around us: hidden producers of valuable compounds 7.2.2.1 Bombinatoridae 7.2.2.2 Fire-bellied toad (Bombina bombina) 7.2.2.2.1 Distribution, biology, threats 7.2.2.2.2 Medical importance 7.2.2.3 Yellow-bellied toad (Bombina variegata) 7.2.2.3.1 Distribution, biology, threats 7.2.2.3.2 Medical importance 7.2.2.4 Bufonidae 7.2.2.4.1 European common toad (Bufo bufo) Distribution, biology, threats Medical importance 7.2.2.4.2 Green toad (Bufotes viridis) Distribution, biology, threats Medical importance 7.3 Reptiles 7.3.1 Snake venoms 7.3.1.1 Viperidae 7.3.1.1.1 Nose-horned viper (Vipera ammodytes) Distribution, biology, threats Medical importance Enzymatic proteins in V. a. ammodytes proteome Nonenzymatic proteins in V. a. ammodytes proteome 7.4 Why is it important to maintain these wild species viable? Acknowledgments References 8 Human genetic diversity in health and disease 8.1 Genetic diversity in humans 8.2 Epigenetic diversity in humans 8.3 Translational potential of human genetic and epigenetic diversity References 9 Potential for cancer treatment: natural products from the Balkans 9.1 Introduction 9.2 Genus Alnus 9.2.1 Alnus incana (L.) Moench 9.2.2 Alnus glutinosa (L.) Gaertn 9.2.3 Alnus viridis (Chaix) DC 9.3 Genus Euphorbia 9.3.1 Euphorbia dendroides L 9.3.2 Euphorbia esula L 9.3.3 Euphorbia nicaeensis All 9.3.4 Euphorbia peplus L 9.3.5 Euphorbia palustris L 9.3.6 Euphorbia platyphyllos L 9.3.7 Euphorbia salicifolia Host 9.3.8 Euphorbia serrulata Thuill 9.3.9 Euphorbia taurinensis All 9.3.10 Euphorbia villosa W. et K 9.4 Genus Achillea 9.4.1 Achillea clavennae L 9.4.2 Achillea millefolium L 9.5 Other genera 9.5.1 Genus Sideritis L 9.5.2 Genus Laserpitium L 9.5.3 Genus Digitalis L 9.5.4 Genus Micromeria Benth 9.5.5 Genus Nepeta L 9.5.6 Genus Teucrium L 9.5.7 Genus Salvia L 9.5.8 Genus Helichrysum Mill 9.6 Division Marchantiophyta 9.6.1 Marchantia polymorpha L 9.6.2 Conocephalum conicum (L.) Dum 9.7 Traditional medicinal uses of plants from the Balkans 9.8 Conclusions References 10 Biodiversity of wild fruits with medicinal potential in Serbia 10.1 Wild fruits 10.2 Natural functional food 10.3 Preventive nutrition and biomedicine 10.4 Wild fruits in Serbia 10.5 Biologically active natural compounds 10.6 Biomedical significance of wild fruits 10.6.1 Antioxidant and antiradical activity 10.6.2 Protective effect 10.6.3 Against disease-causing organisms 10.6.4 Against metabolic disorders 10.6.5 Activity in cell growth and development 10.6.6 Antiinflammatory activity 10.6.7 Antitumor and anticancer activities 10.6.8 Neural and psychotic activities 10.6.9 Enzyme inhibitory activity 10.6.10 Against cardiovascular disorders 10.6.11 Immunomodulatory activity 10.6.12 Against gastrointestinal disorders 10.6.13 Against age-related disorders 10.6.14 Against general health disorders 10.6.15 Against reproductive system disorders 10.7 Species with a pronounced biomedical potential References 11 Botanicals from the Himalayas with anticancer potential: an emphasis on the Kashmir Himalayas 11.1 Introduction 11.2 Geographical and climatic features 11.3 An overview of the plant diversity 11.4 Important potential anticancer wild plants 11.4.1 Acacia nilotica (babul) 11.4.2 Achillea millefolium (yarrow) 11.4.3 Achyranthes aspera (Prickly Chaff Flower) 11.4.4 Aegle marmelos (bael) 11.4.5 Agrimonia pilosa (hairy agrimony) 11.4.6 Anagallis arvensis (scarlet pimpernel) 11.4.7 Andrographis paniculata (king of bitters) 11.4.8 Aphanamixis polystacha (rohituka) 11.4.9 Arisaeama jacquemontii (Jacquemont’s Cobra Lily) 11.4.10 Asparagus filicinus (fern asparagus) 11.4.11 Bacopa monnieri (pennell) 11.4.12 Berberis vulgaris (European barberry) 11.4.13 Cannabis sativa (marijuana) 11.4.14 Castanea sativa (chestnut) 11.4.15 Centella asiatica (asiatic pennywort) 11.4.16 Cichorium intybus (coffeeweed) 11.4.17 Cimicifuga foetida (foetid bugbane) 11.4.18 Coriandrum sativum (coriander) 11.4.19 Crataegus species (hawthorn) 11.4.20 Curcuma longa (turmeric) 11.4.21 Cuscuta reflexa (dodder) 11.4.22 Cynodon dactylon (Bermuda grass) 11.4.23 Elaeagnus angustifolia (Russian olive) 11.4.24 Euphorbia helioscopia (sun spurge) 11.4.25 Euphorbia tirucalli (fire sticks) 11.4.26 Mangifera indica (mango) 11.4.27 Matricaria chamomilla (German chamomile) 11.4.28 Momordica charantia (bitter melon) 11.4.29 Narcissus tazetta (bunchflower daffodil) 11.4.30 Oroxylum indicum (India caper) 11.4.31 Oxalis corniculata (creeping woodsorrel) 11.4.32 Paeonia emodi (Himalayan peony) 11.4.33 Persicaria hydropiper (syn.: Polygonum hydropiper) (water pepper) 11.4.34 Pinus species (pines) 11.4.35 Plectranthus species (coleus) 11.4.36 Plumbago zeylanica (Ceylon leadwort) 11.4.37 Portulaca oleracea (common purslane) 11.4.38 Potentilla species (cinquefoil) 11.4.39 Prangos pabularia (prangos) 11.4.40 Rheum webbianum (rhubarb) 11.4.41 Rhodiola imbricata (golden root) 11.4.42 Saxifraga stolonifera (strawberry saxifrage) 11.4.43 Sida cordifolia (bala) 11.4.44 Silybum marianum (milk thistle) 11.4.45 Sinopodophyllum hexandrum (syn.: Podophyllum emodi) (Himalayan may apple) 11.4.46 Solanum nigrum (European black nightshade) 11.4.47 Stellaria media (chickweed) 11.4.48 Syzygium cumini (jamun) 11.4.49 Tabernaemontana divaricata (crape jasmine) 11.4.50 Terminalia arjuna (arjuna) 11.4.51 Tribulus terrestris (goat’s head) 11.4.52 Trillium govanianum (nag chhatri) 11.4.53 Ulmus wallichiana (elm) 11.4.54 Verbena officinalis (common verbena) 11.4.55 Viscum album (mistletoe) 11.4.56 Zanthoxylum armatum (winged prickly ash) 11.4.57 Ziziphus mauritiana (Indian jujube) 11.5 Important potential anticancer cultivated plants 11.5.1 Abelmoschus esculentus (okra) 11.5.2 Allium sativum (garlic) 11.5.3 Arachis hypogaea (peanut) 11.5.4 Armoracia rusticana (Japanese horseradish) 11.5.5 Avena sativa (oats) 11.5.6 Brassica juncea (mustard) 11.5.7 Brassica napus (rapeseed) 11.5.8 Brassica oleracea (cabbage) 11.5.9 Brassica rapa ssp. rapa (turnip) 11.5.10 Camellia sinensis (green tea) 11.5.11 Capsicum annum (pepper) 11.5.12 Crocus sativus (saffron) 11.5.13 Cucurbita pepo (pumpkin) 11.5.14 Daucus carota ssp. sativus (black carrot) 11.5.15 Foeniculum vulgare (fennel) 11.5.16 Fragaria ananassa (strawberry) 11.5.17 Glycine max (soyabean) 11.5.18 Helianthus annuus (sunflower) 11.5.19 Helianthus tuberosus (artichoke) 11.5.20 Hordeum vulgare (barley) 11.5.21 Ipomoea batatas (sweet potato) 11.5.22 Lagenaria siceraria (calabash or white-flowered gourd) 11.5.23 Linum usitatissimum (linseed) 11.5.24 Malus domestica (apple) 11.5.25 Nigella sativa (black cumin) 11.5.26 Ocimum basilicum (basil) 11.5.27 Oryza sativa (rice) 11.5.28 Panicum miliaceum (finger millet) 11.5.29 Phaseolus vulgaris (bean) 11.5.30 Phyllanthus emblica (amla) 11.5.31 Piper betle (betel vine) 11.5.32 Piper nigrum (black pepper) 11.5.33 Pisum sativum (pea) 11.5.34 Prunus dulcis (almond) 11.5.35 Raphanus raphanistrum ssp. sativus (radish) 11.5.36 Secale cereal (rye) 11.5.37 Sesamum indicum (sesame) 11.5.38 Solanum lycopersicum (tomato) 11.5.39 Solanum melongena (brinjal) 11.5.40 Solanum tuberosum (potato) 11.5.41 Sorghum species (sorghum) 11.5.42 Trigonella foenum-graecum (fenugreek) 11.5.43 Triticum species (wheat) 11.5.44 Vigna unguiculata (cowpea) 11.5.45 Vitis vinifera (grapes) 11.5.46 Withania somnifera (ashwagandha) 11.5.47 Zea mays (maize) 11.5.48 Zingiber officinale (ginger) 11.6 Important potential anticancer exotic plants 11.6.1 Calendula officinalis (marigold) 11.6.2 Eucalyptus species (gum tree) 11.6.3 Robinia pseudoacacia (black locust) 11.6.4 Sambucus nigra (elder) 11.7 Other alternative plants 11.8 Conclusions References 12 Diversity and bioprospect significance of macrofungi in the scrub jungles of southwest India 12.1 Introduction 12.2 Study area 12.3 Survey and data analysis 12.4 Richness, diversity, and survey interval 12.5 Core group fungi 12.6 Substrate preference 12.7 Noteworthy fungi 12.8 Conclusions Acknowledgments References 13 Mushroom and plant extracts as potential intervention supplements in diabetes management 13.1 Introduction 13.2 The effect of hyperglycemia in cells 13.3 Oxidative stress in diabetes 13.4 Mushroom and plant extracts in the treatment of diabetes 13.4.1 Centaurium erythraea Rafn 13.4.2 Castanea sativa 13.4.3 β-Glucan-enriched cereal grain extracts 13.4.4 Lactarius deterrimus Acknowledgments References 14 Anticancer activities of marine macroalgae: status and future perspectives 14.1 Introduction 14.2 Status of reported anticancer activities of marine macroalgae 14.3 Cytotoxic, antiproliferative, and growth inhibitory activities of marine macroalgae 14.3.1 In vitro antitumor activities of marine macroalgae 14.3.2 In vivo antiproliferative and cytotoxic activities 14.3.3 Induced programmed cell death by macroalgae 14.4 Antiangiogenic activity of marine macroalgae 14.5 Antiinvasive and antimetastatic activity of marine macroalgae 14.6 Clinical trials 14.7 Structure–function relation of anticancer compounds isolated from marine macroalgae 14.8 Inhibition of carcinogenic factors 14.9 Impact of physical and environmental factors on anticancer activities 14.10 Prospective for anticancer research in seaweeds 14.11 Conclusion References 15 Insights into the bioactive compounds of endophytic fungi in mangroves 15.1 Introduction 15.2 Endophytic fungi colonization in marine environment 15.3 Mangrove endophytic fungi 15.4 Distribution of mangrove endophytic fungi 15.5 Factors influencing the endophytic fungal distribution 15.6 Environmental condition 15.6.1 Season 15.6.2 Host plant factors 15.6.3 Variation among different plant parts 15.6.4 Crown height and canopy cover 15.7 Mangrove endophytic fungi are a great source of novel bioactive compounds 15.8 In-depth study of mangrove endophytic fungi bioactivities 15.8.1 Antimicrobial, antifungal, antiviral, and antimalarial activities 15.8.2 Anticancer and cytotoxic activities 15.8.3 Therapeutic agents for Alzheimer’s disease 15.8.4 Antidiabetic activity 15.8.5 Antioxidant activity 15.9 Production of enzymes 15.10 Heavy metal tolerant property 15.11 Biocontrol agent Conclusions References 16 Essential oil of mint: current understanding and future prospects 16.1 Introduction 16.2 Mint cultivation 16.2.1 Disease and pest control management in mint 16.3 Mint oil 16.3.1 Role of glandular trichomes in synthesis of essential oil of mint 16.4 Uses of menthol 16.4.1 A source of biofuel 16.4.2 Antioxidant and antiinflammatory features 16.4.3 Antibacterial, antimicrobial, and cytotoxic activities 16.5 Elicitors in mint production: a case study 16.5.1 Sodium alginate 16.5.2 Growth parameters 16.5.3 Physiological and biochemical parameters 16.5.4 Yield and quality parameters Conclusions References 17 Azadirachta indica: the medicinal properties of the global problems-solving tree 17.1 Introduction 17.2 Anticancer properties of A. indica (neem tree) 17.2.1 Anticancer study by Kigodi and coworkers 17.2.2 Anticancer study by Kikuchi and coworkers 17.2.3 Anticancer study by Gualtieri and coworkers 17.2.4 Anticancer study by Kashif and coworkers 17.3 Antidiabetic properties of A. indica (neem tree) 17.3.1 Antidiabetic study by Ponnusamy and coworkers 17.3.2 Antidiabetic study by Perez-Gutierrez and coworkers 17.3.3 Antidiabetic study by Satyanarayana and coworkers 17.4 Antimicrobial properties of A. indica (neem tree) 17.4.1 Antimicrobial study by Siddiqui and coworkers 17.4.2 Antimicrobial study by Siddiqui and coworkers 17.4.3 Antimicrobial study by Siddiqui and coworkers 17.4.4 Antimicrobial study by Chianese and coworkers 17.5 Conclusions Acknowledgments References 18 Advancements in plant transgenomics approach for the biopharmaceutics and vaccines production 18.1 Introduction 18.2 Transgenic plants in biopharmaceuticals 18.2.1 Selection of a plant model and production species 18.2.1.1 Leaf part of crop 18.2.1.2 Seeds from crop plants 18.2.1.3 Fruit and vegetable crops 18.2.2 Expression system 18.2.2.1 Transient expression system 18.2.2.2 Heritable expression system 18.2.3 Transgene location 18.2.4 Humanization of glycan structures in products 18.2.5 Optimization and secretion of protein of interest 18.2.6 Purity, quality control, and safety standard tested 18.2.7 Release and agricultural-scale cultivation of transgenic plants 18.3 Transgenic plants in vaccine development 18.3.1 Plants for vaccine expression 18.3.2 Subunit vaccines 18.3.3 Edible vaccines 18.3.4 Chloroplast-based vaccines 18.4 Plant transgenomics: a way forward 18.5 Conclusions References 19 Secondary metabolites from endangered Gentiana, Gentianella, Centaurium, and Swertia species (Gentianaceae): promising n... 19.1 Introduction 19.2 Secondary metabolites 19.2.1 Terpenoids 19.2.1.1 Iridoids 19.2.2 Phenolics 19.2.2.1 Xanthones 19.2.2.1.1 Biosynthesis of xanthones 19.2.2.2 C-Glucoflavones 19.3 Gentianaceae 19.4 The importance of biodiversity as a source of naturally derived bioactive molecules 19.5 Pharmacological activities of xanthones 19.5.1 1-Hydroxy-3,5-dimethoxyxanthone 19.5.2 Mesuaxanthone A 19.5.3 Gentisein 19.5.4 Gentisin and isogentisin 19.5.5 Demethylbellidifolin 19.5.6 Bellidifolin 19.5.7 Swerchirin 19.5.8 Gentiacaulein and gentiakochianin 19.5.9 Swertiaperenine 19.5.10 Decussatin 19.5.11 Norswertianin 19.5.12 Gentioside 19.5.13 Eustomin and demethyleustomin 19.5.14 Corymbiferin 19.5.15 Lanceoside 19.6 Pharmacological activities of secoiridoids 19.6.1 Swertiamarin 19.6.1.1 Immunomodulatory, anti-inflammatory, and antioxidant activity 19.6.1.2 Hepatoprotective activity 19.6.1.3 Hypoglycemic and anti-diabetic activity 19.6.1.4 CNS modulating activity 19.6.2 Gentiopicroside (gentiopicrin, GP) 19.6.2.1 Hypoglycemic and anti-diabetic activity 19.6.2.2 CNS modulating activity 19.6.2.3 Hepatoprotective activity 19.6.2.4 Anti-inflammatory activity 19.6.3 Sweroside 19.6.3.1 Hepatoprotective and anti-inflammatory activity 19.6.3.2 Hipoglycemic and anti-diabetic activity 19.6.3.3 Antimicrobial activity 19.6.3.4 Wound-healing activity 19.6.3.5 Cytotoxic and antitumor activity 19.7 Conclusion Acknowledgments Abbreviations References 20 Grape (Vitis vinifera L.): health benefits and effects of growing conditions on quality parameters 20.1 Introduction 20.1.1 Grapevine in folk medicine 20.2 Grape phenolics and health benefits 20.2.1 Biological activity of grape skin extract 20.2.2 Biological activity of grape seed extract 20.3 Viticulture and studies of grape phenolic compounds in Montenegro 20.4 Influence of grapevine growing conditions on grape quality and its biological activity—our results 20.4.1 Growing conditions 20.4.1.1 Soil properties 20.4.1.2 Climatic parameters 20.4.1.3 Fertilization 20.4.1.4 Irrigation 20.4.2 Leaf and grape parameters 20.4.2.1 Elemental composition of leaf blade 20.4.2.2 Elemental composition of grape skin 20.4.2.3 Grape yield and total soluble solids 20.4.2.4 Grape total phenolics 20.4.3 Effects of growing conditions on leaf and grape parameters 20.4.4 Anticancer properties of grape skin extracts 20.4.5 Intake of elements and phenolics by grape 20.5 Conclusions and future perspectives Acknowledgments References 21 Flavonoids in cancer therapy: current and future trends 21.1 Flavonoids 21.1.1 Classification and distributions of flavonoids families 21.1.1.1 Flavones 21.1.1.2 Flavonols 21.1.1.3 Flavanones 21.1.1.4 Flavanols, flavan-3-ols or catechins 21.1.1.5 Isoflavones 21.1.1.6 Anthocyanins 21.1.2 Structure and biosynthesis of flavonoids 21.2 Therapeutic potential of flavonoids in cancer 21.2.1 Antiproliferative effects of flavonoids on cancer 21.2.1.1 Flavones 21.2.1.2 Flavonols 21.2.1.3 Flavanones 21.2.1.4 Flavanols, flavan-3-ols, or catechins 21.2.1.5 Isoflavones 21.2.1.6 Anthocyanins 21.2.2 Apoptotic effects of flavonoids on cancer 21.2.2.1 Flavones 21.2.2.2 Flavonols 21.2.2.3 Flavanones 21.2.2.4 Flavanols, flavan-3-ols, or catechins 21.2.2.5 Isoflavones 21.2.2.6 Anthocyanins 21.2.3 Antiinvasive, antimigration, and antimetastatic effects of flavonoids on cancer cell 21.2.3.1 Flavones 21.2.3.2 Flavonols 21.2.3.3 Flavanones 21.2.3.4 Flavanols, flavan-3-ols, or catechins 21.2.3.5 Isoflavones 21.2.3.6 Anthocyanins 21.2.4 Flavonoids in reversal of drug resistance 21.2.4.1 Flavones 21.2.4.2 Flavonols 21.2.4.3 Flavanones 21.2.4.4 Flavanols, flavan-3-ols, or catechins 21.2.4.5 Isoflavones 21.2.5 Flavonoids in angiogenesis 21.2.5.1 Flavones 21.2.5.2 Flavonols 21.2.5.3 Flavanols, flavan-3-ols, or catechins 21.2.5.4 Anthocyanins 21.2.6 Flavonoids and the stem cell properties of cancer cells 21.2.6.1 Flavones 21.2.6.2 Flavonols 21.2.6.3 Flavanols, flavan-3-ols, or catechins 21.2.6.4 Isoflavones 21.3 Conclusion and future perspectives Reference 22 Personalized biomedicine in cancer: from traditional therapy to sustainable healthcare 22.1 Introduction 22.2 Biomedicine approaches in cancer 22.2.1 Perspectives in the diagnosis and tracking of cancer initiation 22.2.2 Novel approaches to prevent cancer progression and treatment of cancer 22.2.2.1 Drug discovery 22.2.2.2 Epigenomics and epigenetic therapy 22.2.2.3 Immunotherapy 22.2.2.4 Targeted therapy 22.2.2.5 Pharmacogenomics for cancer therapy 22.3 Development of drug discovery in biomedicine (model systems in drug discovery) 22.3.1 Using computational models for drug design and discovery 22.3.2 Pharmacological modeling and in vitro testing 22.3.3 Using in vivo models for drug development 22.4 The future direction of biomedicine for healthcare and conclusion References 23 Tumor-specific genetic profiling and therapy in biomedicine 23.1 Changes in cancer cells in a tumor mass 23.1.1 Altered marker expression or differentiation 23.1.2 Altered intracellular signaling 23.1.3 Synthesizing tumor-specific transcripts 23.1.4 Evading from Immune system cells 23.1.5 Evading tumor suppressor genes or proteins 23.1.6 Mutations in cell cycle checkpoints 23.1.7 Mutations in cellular growth-related genes or proteins 23.1.8 Epigenetic changes during tumorigenesis 23.2 Genetic profiling for genomic instability in cancer cells 23.2.1 Cancer cell-specific (DNA and mitochondrial DNA) sequencing 23.2.2 Genetic tests for tumor progression related genes, RNAs or proteins 23.3 Personalized therapies 23.3.1 Drug implementation based on the genetic background (pharmacogenomics) 23.3.2 Marker-based drug therapies using wet lab techniques and bioinformatic tools 23.3.3 Following circulating tumor cells and therapies 23.3.4 Tumor-specific gene therapies 23.3.5 Immunotherapy using immune system cells 23.3.5.1 CAR-T cells 23.3.5.2 CAR-NK cells 23.3.5.3 Macrophages for regulation of tumor microenvironment 23.4 Future perspectives and conclusion References 24 Vascular and bone marrow explant models to assess in vitro hematotoxicity of herbal extracts 24.1 Background 24.2 Material and methods 24.2.1 Plant extracts preparation 24.2.1.1 Hematopoietic tissues and cells isolation 24.2.1.2 cKit+ cell isolation 24.2.1.3 In vitro cell culture 24.2.1.4 Colony-forming unit cells 24.2.1.5 Fluorescence-activated cell sorting analysis 24.3 Results and discussion 24.4 Conclusion Acknowledgments Competing interests Ethics approval and consent to participate Funding References 25 Nature-inspired synthetic analogues of quorum sensing signaling molecules as novel therapeutics against Pseudomonas aeru... 25.1 Introduction 25.2 P. aeruginosa infections 25.3 Therapeutic options against P. aeruginosa infections 25.3.1 Inhibitors of adhesion and biofilms 25.3.2 Inhibition of Type III secretion system 25.3.3 Quorum sensing system as antivirulence target 25.4 Quorum sensing in P. aeruginosa 25.4.1 Inhibition of P. aeruginosa quorum sensing signaling 25.4.1.1 Inhibition of signal generation 25.4.1.2 Inactivation of autoinducers 25.4.1.3 Competition for Binding to Receptors 25.4.2 Natural products as quorum sensing inhibitors 25.4.3 Synthetic compounds with quorum sensing inhibitory activity 25.4.3.1 Inhibitors of las signaling pathway 25.4.3.2 Inhibitors of Rhl signaling pathway 25.4.3.3 Inhibitors of PQS signaling pathway 25.4.3.4 Inhibitors of IQS signaling pathway 25.4.3.5 Virulence factors inhibitors 25.4.3.6 Metal complexes as quorum sensing inhibitors 25.5 Perspective of antivirulence therapy Abbreviations References 26 Biomedicine: biodiversity’s panacea? Context of commodification 26.1 Introduction 26.2 A brief primer on the concept of ecosystem services as related to biodiversity and biomedicine 26.3 Biodiversity, bioprospecting, and human welfare 26.3.1 Biodiversity 26.3.2 Biomedicine and bioprospecting 26.3.3 Human welfare and ownership of nature 26.3.4 Producing medicines from nature 26.4 Next steps 26.4.1 Developing a better understanding of biodiversity and conservation 26.4.1.1 Documentation of biodiversity and biomedical implications 26.4.1.2 Assessment and documentation of conservation outcomes 26.4.2 Conflict resolution, cross-cultural communication, and education 26.4.2.1 Guidelines for conflict management in conservation of biodiversity 26.4.3 Policies and regulatory frameworks, plus enforcement 26.4.3.1 Established institutions and efforts Conclusion Acknowledgements Disclaimer References Index Back Cover