ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biodegradable Polyesters

دانلود کتاب پلی استرهای زیست تخریب پذیر

Biodegradable Polyesters

مشخصات کتاب

Biodegradable Polyesters

دسته بندی: علم شیمی
ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 9783527656950, 3527656987 
ناشر: Wiley-VCH 
سال نشر: 2015 
تعداد صفحات: 370 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 مگابایت 

قیمت کتاب (تومان) : 45,000



کلمات کلیدی مربوط به کتاب پلی استرهای زیست تخریب پذیر: شیمی و صنایع شیمیایی، ترکیبات با وزن مولکولی بالا



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Biodegradable Polyesters به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پلی استرهای زیست تخریب پذیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پلی استرهای زیست تخریب پذیر

با گردآوری دانشی که به‌تدریج به‌دست‌آمده و به‌تازگی به‌دست‌آمده در یک کار، این یک مرجع جامع در مورد سنتز، خواص، خصوصیات، و کاربردهای این کلاس از پلاستیک‌های سازگار با محیط زیست است.
گروهی از محققان مشهور بین المللی تجربیات و دانش دست اول خود را ارائه می دهند و منحصراً با پلی استرهای زیست تخریب پذیر سروکار دارند که در دو دهه گذشته به دلیل نگرانی های زیست محیطی از یک سو و کاربردهای جدید در صنعت زیست پزشکی اهمیت فزاینده ای یافته اند. از طرف دیگر.
نتیجه یک مرور کلی بی نظیر برای شیمیدان صنعتی و دانشمندان مواد و همچنین برای توسعه دهندگان و محققان در صنعت و دانشگاه است.


توضیحاتی درمورد کتاب به خارجی

Collating otherwise hard-to-get and recently acquired knowledge in one work, this is a comprehensive reference on the synthesis, properties, characterization, and applications of this eco-friendly class of plastics.
A group of internationally renowned researchers offer their first-hand experience and knowledge, dealing exclusively with those biodegradable polyesters that have become increasingly important over the past two decades due to environmental concerns on the one hand and newly-devised applications in the biomedical field on the other.
The result is an unparalleled overview for the industrial chemist and materials scientist, as well as for developers and researchers in industry and academia alike.



فهرست مطالب

Content: List of Contributors XIII     List of Abbreviations and Symbols XVII     Preface XIX     1 Biodegradable Polyesters: Synthesis, Properties, Applications 1 Chi Zhang     1.1 Historical Overview on the Origin of Polymer Science and Synthesis of Polyamides and Polyesters 1     1.1.1 Synthesis of Polyamides 3     1.1.2 Initial Knowledge about Polyesters 5     1.2 Publication Trend of Representative Biodegradable and Nonbiodegradable Polyesters in the Past Century 6     1.3 Biodegradable Polyesters 6     1.3.1 Biodegradable Aliphatic Polyesters andTheir Copolymers 7     1.3.1.1 Poly(lactic acid) 7     1.3.1.2 Polyglycolide or Poly(glycolic acid) 12     1.3.1.3 Poly(caprolactone) 15     1.4 Concluding Remarks 18     Acknowledgment 18     References 19     2 Functional (Bio)degradable Polyesters by Radical Ring-Opening Polymerization 25 Seema Agarwal     2.1 Introduction 25     2.2 Radical Ring-Opening Polymerization (RROP) of Cyclic Ketene Acetals 26     2.2.1 Starting Monomers: Cyclic Ketene Acetals 26     2.2.2 Radical Ring-Opening Polymerization Mechanism 28     2.2.3 Functional Polyesters by Conventional and Controlled Radical Homopolymerization of CKAs 30     2.2.4 Functional Polyesters by Copolymerization of CKAs and Vinyl Monomers 31     2.3 Conclusions 41     References 41     3 Microbial Synthesis of Biodegradable Polyesters: Processes, Products, Applications 47 Bernd H.A. Rehm     3.1 Introduction 47     3.2 Biogenesis of Microbial Polyhydroxyalkanoate Granules 48     3.3 The Diversity of Biopolyesters 49     3.4 Polyester (PHA) Synthases are the Key Enzymes 51     3.5 Catalytic Reaction Mechanism 52     3.6 PHA Inclusions: Self-Assembly and Structure 53     3.7 Industrial Production of Bacterial Polyhydroxyalkanoates: PHAs via Fermentation 56     3.8 Application Opportunities of Bacterial Polyhydroxyalkanoates 58     3.8.1 In Energy Industry: Biofuels Based on PHAs 58     3.8.2 In Material Industry: PHAs as Polymeric Materials 59     3.8.2.1 PHAs as Biodegradable Plastics and Fiber Materials 59     3.8.2.2 PHAs as Medical Implant Materials 59     3.8.2.3 PHAs as Drug Delivery Carrier 60     3.8.3 Fine Chemical Industry: PHA Chiral Monomers 60     3.8.4 Application of PHA Granule Surface Proteins 61     3.8.5 Production of Tailor-Made Biopolyester Nanoparticles and Potential Applications 61     3.8.6 Future Development of PHA-Based Industry 62     3.8.6.1 The Development of Low-Cost PHA Production Technology 62     3.8.6.2 Unusual PHAs with Special Properties 63     3.8.6.3 High Value Added Applications 64     3.8.6.4 Other Future Applications 64     3.8.6.5 Microbial Synthesis of Poly(lactic acid) (PLA) 64     3.8.7 Applications of PHA Inclusions as Functionalized Biobeads 65     3.8.7.1 Bioseparations 65     3.8.7.2 Drug Delivery 65     3.8.7.3 Protein Purification 65     3.8.7.4 Enzyme Immobilization 66     3.8.7.5 Diagnostics and Imaging 66     3.8.7.6 Vaccine Delivery 66     3.9 Conclusions and Outlook 67     Acknowledgments 67     References 67     4 Synthesis, Properties, and Mathematical Modeling of Biodegradable Aliphatic Polyesters Based on 1,3-Propanediol and Dicarboxylic Acids 73 Dimitris S. Achilias and Dimitrios N. Bikiaris     4.1 Introduction 73     4.1.1 Aliphatic Polyesters 73     4.1.2 Production of 1,3-Propanediol 75     4.2 Synthesis of Aliphatic Polyesters from 1,3-Propanediol and Aliphatic Acids 78     4.3 Properties of Poly(propylene alkylenedicarboxylates) 80     4.4 Mathematical Modeling of the Synthesis of Aliphatic Polyesters 85     4.4.1 Brief History of Step Reaction Kinetic Modeling 85     4.4.2 Mathematical Modeling of the Esterification Reaction for the Synthesis of Aliphatic Polyesters 87     4.4.2.1 Literature Survey 87     4.4.2.2 Modeling Approaches 88     4.4.2.3 Modeling Using the Functional Group Approach 88     4.4.2.4 Modeling Using an Overall Reaction Model 97     4.4.2.5 Modeling the Effect of Silica Nanoparticles on the Esterification Reaction 98     4.4.3 Modeling the Polycondensation Reaction Kinetics for the Synthesis of Aliphatic Polyesters 100     4.4.3.1 Reaction Scheme 100     4.4.3.2 Development of the Mathematical Model 101     4.4.3.3 Simulation Model Results 102     4.5 Conclusions 105     References 106     5 Crystallization of Poly(lactic acid) 109 Maria Laura Di Lorenzo and Rene Androsch     5.1 Introduction 109     5.2 Crystal Polymorphism in Poly(L-lactic acid) 111     5.3 Kinetics of Crystal Nucleation 114     5.4 Crystal Growth Rate 119     5.5 Influence of Comonomer Content 122     5.6 Stereocomplex Crystals of Poly(L-lactide)/Poly(D-lactide) 123     5.7 Conclusions 125     References 125     6 Shape Memory Systems with Biodegradable Polyesters 131 Jozsef Karger Kocsis and Suchart Siengchin     6.1 Introduction 131     6.2 Shape Memory Polymer Systems 133     6.2.1 Homopolymers and Composites 134     6.2.1.1 Linear 134     6.2.1.2 Cross-linked 134     6.2.2 Copolymers and Composites 138     6.2.2.1 Linear 138     6.2.2.2 Cross-linked 140     6.2.3 Polyester-Containing Polyurethanes and Related Composites 142     6.2.4 Blends and Composites 142     6.2.4.1 Linear 144     6.2.4.2 Cross-linked 145     6.2.5 Polymers withThermosets 145     6.2.5.1 Conetworks 145     6.2.5.2 Semi-Interpenetrating Network 146     6.2.5.3 Interpenetrating Network 148     6.3 Applications 148     6.4 Outlook and Future Trends 149     Acknowledgments 149     References 149     7 Electrospun Scaffolds of Biodegradable Polyesters: Manufacturing and Biomedical Application 155 Patricia Pranke, Daniel E.Weibel, and Daikelly I. Braghirolli     7.1 Introduction 155     7.2 Preparation of Polyesters for the Electrospinning Method 157     7.3 Improving the Bioactivity of Electrospun Polyesters 160     7.3.1 Surface Modification Techniques 160     7.3.1.1 Wet Chemical Surface Modification 160     7.3.1.2 Plasma 162     7.3.1.3 Ozone 165     7.3.1.4 Ultraviolet Radiation 167     7.3.1.5 Functionalization of Polyester Electrospun Scaffolds with Bioactive Molecules 170     7.3.2 Pretreatments: Association of Polyesters with Biomolecules before Electrospinning 172     7.3.2.1 Blends of Polyesters with Other Polymers and/or Biomolecules 172     7.3.2.2 Co-electrospinning and Electrospraying 174     7.4 Applications 175     7.5 Conclusions 180     References 180     8 Systematic Development of Electrospun PLA/PCL Fiber Hybrid Mats: Preparation, Material Characterization, and Application in Drug Delivery 191 Hazim J. Haroosh and Yu Dong     8.1 Introduction 191     8.2 Material Preparation and Characterization 193     8.3 Morphological Observations 197     8.3.1 Effect of Solution Viscosity 197     8.3.2 Effect of Blend Ratio 198     8.3.3 Effect of Solvents 200     8.4 Crystalline Structures 202     8.5 Thermal Properties 204     8.6 FTIR Analysis 205     8.7 TCH Drug Release 206     8.8 Fiber Biodegradability 207     8.9 Conclusions 208     References 209     9 Environment-Friendly Methods for Converting Biodegradable Polyesters into Nano-Sized Materials 215 Stoyko Fakirov     9.1 Tissue Engineering in Medicine and the Polymeric Materials Needed 215     9.2 MFC Concept and its Potential for Biomedical Applications 219     9.3 Effect of Hydrogen Bonding in Polymer Blends on Nano-Morphology 223     9.4 Mechanism of Nano-Morphology Formation in Polymer Blends without and with Hydrogen Bonding 227     9.5 Biomedical Application Opportunities of Nano-Sized Polymers 229     9.6 Conclusions 231     Acknowledgments 232     References 232     10 Highly Toughened Polylactide-Based Materials through Melt-Blending Techniques 235 Jeremy Odent, Jean-Marie Raquez, and Philippe Dubois     10.1 Introduction 235     10.1.1 Polylactide as a Bio-based Alternative 235     10.1.2 Polylactide and Its Industrial Production 237     10.1.3 Main Properties of PLA 240     10.2 Polylactide Strengthening and Strategies 242     10.2.1 Impact and Toughening Mechanisms: General Considerations 243     10.2.2 Rubber-Toughened Polylactide 248     10.2.3 Nanoparticle-Mediated Compatibilization Process 257     10.2.4 Interpenetrating Networks and Self-Assembling of PLA-Based Materials 261     10.3 Crystallization-Induced Toughness and Morphological Control 263     10.4 Conclusions 268     References 268     11 Electrospun Biopolymer Nanofibers and Their Composites for Drug Delivery Applications 275 Yue-EMiao and Tianxi Liu     11.1 Introduction 275     11.2 Simply Blended Drug/Biopolymer Nanofibers by Conventional Electrospinning for Drug Delivery 276     11.2.1 Drug-Loaded Single-Component Biopolymer Nanofibers 277     11.2.2 Drug-Loaded Multicomponent Biopolymer Nanofibers 279     11.2.3 Drug-Loaded Nanoparticle/Biopolymer Composites 280     11.3 Uniquely Encapsulated Drug/Biopolymer Nanofiber Systems for Drug Delivery 283     11.3.1 Coaxial Electrospun Drug/Biopolymer Nanofibers 283     11.3.2 Emulsion Electrospun Drug/Biopolymer Nanofibers 286     11.3.3 Electrosprayed Drug/Biopolymer Nanofibers 289     11.4 Conclusions and Outlook 292     Acknowledgment 293     References 293     12 Biodegradable Polyesters Polymer   Polymer Composites with Improved Properties for Potential Stent Applications 299 Lloyd D. Kimble and Debes Bhattacharyya     12.1 Introduction 299     12.2 Stenting Development 300     12.2.1 Bare Metal Stents 300     12.2.2 Coated Metal Stents 301     12.2.3 Drug-Eluting Stents 301     12.2.4 Recap and the Next Phase of Stent Evolution: Biodegradable Stents 301     12.3 Stents     an Engineering Point of View 302     12.3.1 Stent Deployment: the Need for Ductility 302     12.3.2 Importance of Creep after Implantation 303     12.3.3 A Vessel Is Not Static: Material Fatigue Considerations 304     12.3.4 Material Degradation: a Critical Variable 304     12.3.5 Engineering Solutions versus Clinical Implications 305     12.4 Biodegradable Stents 305     12.4.1 Selection Criteria for Biodegradable Stent Materials 305     12.5 The MFC Concept for Preparation of Polymer   Polymer Composites with Superior Mechanical Properties 309     12.5.1 Preparation of Polymer   Polymer Composites from PLLA/PGA Blends 310     12.5.2 MFC Film Molding 310     12.6 Properties of PLA/PGA Polymer   Polymer Nanofibrillar Composites 311     12.6.1 Morphology of PLA/PGA Nano-/Microfibrillar Polymer   Polymer Composites 311     12.6.2 Mechanical Properties of PLA/PGA Nano-/Microfibrillar Polymer   Polymer Nanofibrillar Composites 314     12.6.3 Viscoelastic Behavior of PLLA/PGA Nano-/Microfibrillar Polymer   Polymer Composites 314     12.6.4 Analysis of Properties of PLLA/PGA Nano-/Microfibrillar Polymer   Polymer Composites with Respect toTheir Potential Stent Applications 316     12.7 Conclusions and Outlook 317     References 318     13 Biodegradable Polyester-Based Blends and Composites: Manufacturing, Properties, and Applications 321 Raj Das and Kariappa M. Karumbaiah     13.1 Introduction 321     13.2 Reinforcements in Polymer Composites 322     13.2.1 Glass and Carbon Fiber Reinforcements 323     13.2.2 Natural Fiber Reinforcements 323     13.2.3 Synthetic Fiber Reinforcements 324     13.3 Blends of Biodegradable Polyesters 325     13.4 Composites of Biodegradable Polyesters 326     13.4.1 Composites Reinforced with Carbon and Glass Fibers 326     13.4.2 Composites Reinforced with Natural Fibers 327     13.4.3 Polymer   Polymer Composites Based on Biodegradable Polyesters 330     13.5 Application of Biodegradable Polyester-Based Blends and Composites 331     13.5.1 Biomedical Applications 331     13.5.2 Commodity Applications 333     13.6 Summary 334     References 335     Index 341




نظرات کاربران