دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Second edition] نویسندگان: Anthony-Cahill. Spencer J., Appling. Dean Ramsay, Mathews. Christopher K سری: ISBN (شابک) : 0134641620, 013480466X ناشر: Pearson سال نشر: 2019 تعداد صفحات: xx [934] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 199 Mb
در صورت تبدیل فایل کتاب Biochemistry: concepts and connections به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بیوشیمی: مفاهیم و ارتباطات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای دوره های بیوشیمی درگیر کردن دانشآموزان با بیوشیمی به صورت بصری و از طریق برنامههای کاربردی در دنیای واقعی. تیم نویسنده مهارتهای استدلال کمی را ایجاد میکند و دیدگاهی غنی و شیمیایی در مورد فرآیندهای بیولوژیکی در اختیار دانشآموزان قرار میدهد. متن بر مفاهیم و ارتباطات اساسی تأکید می کند و نشان می دهد که چگونه بیوشیمی با کاربردهای عملی در پزشکی، علوم کشاورزی، علوم محیطی و پزشکی قانونی مرتبط است. ویرایش دوم که به تازگی تجدید نظر شده است، محتوای قوی تری را که مربوط به بیوشیمی است در استادیوم (tm) شیمی ادغام می کند و یک تجربه تعاملی را برای دانش آموزان امروزی ایجاد می کند. آموزشهای مفهوم آستانه جدید به دانشآموزان کمک میکند تا بر چالشبرانگیزترین و انتقادیترین ایدهها در بیوشیمی تسلط پیدا کنند، در حالی که مطالعات موردی تعاملی، مطالب درسی را به دنیای واقعی وصل میکند تا دانشآموزان دادههای علمی واقعی را از ادبیات اولیه کشف کنند. نسخه دوم یک تجربه یادگیری یکپارچه را از طریق متن، تسلط بر شیمی و متن الکترونیکی Pearson تعاملی فراهم می کند. همچنین با Mastering Chemistry Mastering (tm) پلت فرم آموزش و یادگیری است که به شما امکان می دهد به هر دانش آموزی دسترسی پیدا کنید. با ترکیب محتوای نویسنده قابل اعتماد با ابزارهای دیجیتالی که برای جذب دانشآموزان و تقلید از تجربه ساعات اداری ایجاد شدهاند، Mastering یادگیری را شخصیسازی میکند و اغلب نتایج را برای هر دانشآموز بهبود میبخشد. دانشآموزان میتوانند بعد از کلاس از طریق تکالیف سنتی و تطبیقی که نکات و بازخوردهای خاص پاسخ را ارائه میدهند، بر مفاهیم تسلط بیشتری پیدا کنند. کتاب نمرات Mastering نمرات همه تکالیف نمرهگذاری شده خودکار را در یک مکان ثبت میکند، در حالی که ابزارهای تشخیصی به مربیان امکان دسترسی به دادههای غنی را برای ارزیابی درک دانشآموزان و باورهای غلط میدهند. توجه: شما در حال خرید یک محصول مستقل هستید. تسلط بر شیمی با این محتوا همراه نیست. دانشجویانی که علاقه مند به خرید این عنوان با Mastering Chemistry هستند، از استاد خود پکیج ISBN و Course ID صحیح را بخواهند. مربیان، برای اطلاعات بیشتر با نماینده پیرسون خود تماس بگیرید. 013480466X / 9780134804668 Biochemistry: مفاهیم و اتصالات به علاوه تسلط شیمی با Pearson Etext - بسته بسته بندی Cardsistry شامل: 0134641620 /97801341621 Biochemistry: مفاهیم و اتصالات 0134747471616x و اتصالات
For courses in biochemistry. Engage students in biochemistry visually and through real-world applications Biochemistry: Concepts and Connections engages students with a unique approach to visualization, synthesis of complex topics, and connections to the real world. The author team builds quantitative reasoning skills and provides students with a rich, chemical perspective on biological processes. The text emphasizes fundamental concepts and connections, showing how biochemistry relates to practical applications in medicine, agricultural sciences, environmental sciences, and forensics. The newly revised 2nd Edition integrates even more robust biochemistry-specific content in Mastering(tm) Chemistry, creating an interactive experience for today's students. New Threshold Concept Tutorials help students master the most challenging and critical ideas in biochemistry, while Interactive Case Studies connect course material to the real world by having students explore actual scientific data from primary literature. The 2nd Edition provides a seamlessly integrated learning experience via text, Mastering Chemistry, and an interactive Pearson eText. Also available with Mastering Chemistry Mastering(tm) is the teaching and learning platform that empowers you to reach every student. By combining trusted author content with digital tools developed to engage students and emulate the office-hour experience, Mastering personalizes learning and often improves results for each student. Students can further master concepts after class through traditional and adaptive homework assignments that provide hints and answer-specific feedback. The Mastering gradebook records scores for all automatically graded assignments in one place, while diagnostic tools give instructors access to rich data to assess student understanding and misconceptions. Note: You are purchasing a standalone product; Mastering Chemistry does not come packaged with this content. Students, if interested in purchasing this title with Mastering Chemistry , ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. 013480466X / 9780134804668 Biochemistry: Concepts and Connections Plus Mastering Chemistry with Pearson eText -- Access Card Package Package consists of: 0134641620 / 9780134641621 Biochemistry: Concepts and Connections 013474716X / 9780134747163 Mastering Chemistry with Pearson eText -- ValuePack Access Card -- for Biochemistry: Concepts and Connections
Cover......Page 1
Title Page......Page 2
Copyright Page......Page 3
Brief Contents......Page 4
Contents......Page 5
Preface......Page 20
About the Authors......Page 23
Tools of Biochemistry:......Page 24
Foundation Figures......Page 25
Chapter 1: Biochemistry and the Language of Chemistry......Page 35
The Origins of Biochemistry......Page 37
Biochemistry as a Discipline and an Interdisciplinary Science......Page 39
The Chemical Elements of Cells and Organisms......Page 40
The Complexity and Size of Biological Molecules......Page 41
The Biopolymers: Proteins, Nucleic Acids, and Carbohydrates......Page 42
1.3. Distinguishing Characteristics of Living Systems......Page 44
1.4. The Unit of Biological Organization: The Cell......Page 46
1.5. Biochemistry and the Information Explosion......Page 47
Chapter 2: The Chemical Foundation of Life: Weak Interactions in an Aqueous Environment......Page 51
2.1. The Importance of Noncovalent Interactions in Biochemistry......Page 53
2.2. The Nature of Noncovalent Interactions......Page 54
Charge–Charge Interactions......Page 55
Van der Waals Interactions......Page 56
Hydrogen Bonds......Page 57
The Structure and Properties of Water......Page 59
Water as a Solvent......Page 60
Hydrophobic Molecules in Aqueous Solution......Page 61
2.4. Acid–Base Equilibria......Page 62
Ionization of Water and the Ion Product......Page 63
The pH Scale and the Physiological pH Range......Page 64
Weak Acid and Base Equilibria: Ka and pKa......Page 65
Titration of Weak Acids: The Henderson–Hasselbalch Equation......Page 66
Buffer Solutions......Page 67
Molecules with Multiple Ionizing Groups......Page 68
Solubility of Macroions and pH......Page 71
The Influence of Small Ions: Ionic Strength......Page 73
Tools of Biochemistry: 2A Electrophoresis and Isoelectric Focusing......Page 77
Foundation Figure: Biomolecules: Structure and Function......Page 79
Chapter 3: The Energetics of Life......Page 81
The First Law of Thermodynamics and Enthalpy......Page 83
The Driving Force for a Process......Page 84
Entropy......Page 85
Free Energy Defined in Terms of Enthalpy and Entropy Changes in the System......Page 86
The Interplay of Enthalpy and Entropy: A Summary......Page 87
Equilibrium, Le Chatelier’s Principle, and the Standard State......Page 89
.G versus .G°, Q versus K, and Homeostasis versus Equilibrium......Page 90
Water, H+ in Buffered Solutions, and the “Biochemical Standard State”......Page 92
Organic Phosphate Compounds as Energy Transducers......Page 93
Free Energy and Concentration Gradients: A Close Look at Diffusion Through a Membrane......Page 96
Quantification of Reducing Power: Standard Reduction Potential......Page 97
Standard Free Energy Changes in Oxidation–Reduction Reactions......Page 99
A Brief Overview of Free Energy Changes in Cells......Page 100
Chapter 4: Nucleic Acids......Page 105
The Two Types of Nucleic Acid: DNA and RNA......Page 107
Properties of the Nucleotides......Page 109
Stability and Formation of the Phosphodiester Linkage......Page 110
The Nature and Significance of Primary Structure......Page 112
DNA as the Genetic Substance: Early Evidence......Page 113
X-Ray Analysis of DNA Fibers......Page 114
Semiconservative Nature of DNA Replication......Page 116
Alternative Nucleic Acid Structures: B and A Helices......Page 117
DNA Molecules......Page 119
Circular DNA and Supercoiling......Page 120
Single-Stranded Polynucleotides......Page 121
Left-Handed DNA (Z-DNA)......Page 123
Triple Helices......Page 124
G-Quadruplexes......Page 125
4.5. The Helix-to-Random Coil Transition: Nucleic Acid Denaturation......Page 126
Replication: DNA to DNA......Page 127
Translation: RNA to Protein......Page 128
Tools of Biochemistry: 4A Manipulating DNA......Page 132
Tools of Biochemistry: 4B An Introduction to X-Ray Diffraction......Page 137
Chapter 5: Introduction to Proteins: The Primary Level of Protein Structure......Page 141
Stereochemistry of the a-Amino Acids......Page 144
Amino Acids with Nonpolar Aromatic Side Chains......Page 148
Amino Acids with Positively Charged (Basic) Side Chains......Page 149
5.2. Peptides and the Peptide Bond......Page 150
The Structure of the Peptide Bond......Page 151
Peptides......Page 152
Polypeptides as Polyampholytes......Page 153
5.3. Proteins: Polypeptides of Defined Sequence......Page 154
The Genetic Code......Page 156
Posttranslational Processing of Proteins......Page 157
5.5. From Gene Sequence to Protein Function......Page 158
5.6. Protein Sequence Homology......Page 160
Tools of Biochemistry: 5A Protein Expression and Purification......Page 164
Tools of Biochemistry: 5B Mass, Sequence, and Amino Acid Analyses of Purified Proteins......Page 171
Chapter 6: The Three-Dimensional Structure of Proteins......Page 177
Theoretical Descriptions of Regular Polypeptide Structures......Page 179
Describing the Structures: Helices and Sheets......Page 181
Amphipathic Helices and Sheets......Page 182
Ramachandran Plots......Page 183
The Keratins......Page 185
Fibroin......Page 186
Collagen......Page 187
Different Modes of Display Aid Our Understanding of Protein Structure......Page 189
Varieties of Globular Protein Structure: Patterns of Main-Chain Folding......Page 190
The Information for Protein Folding......Page 194
Conformational Entropy......Page 195
The Hydrophobic Effect......Page 196
Disulfide Bonds and Protein Stability......Page 197
Prosthetic Groups, Ion-Binding, and Protein Stability......Page 198
Kinetics of Protein Folding......Page 199
The “Energy Landscape” Model of Protein Folding......Page 200
Chaperones Faciliate Protein Folding in Vivo......Page 201
Protein Misfolding and Disease......Page 203
Prediction of Secondary Structure......Page 204
Symmetry in Multisubunit Proteins: Homotypic Protein–Protein Interactions......Page 205
Heterotypic Protein–Protein Interactions......Page 207
Tools of Biochemistry: 6A Spectroscopic Methods for Studying Macromolecular Conformation in Solution......Page 211
Tools of Biochemistry: 6B Determining Molecular Masses and the Number of Subunits in a Protein Molecule......Page 218
Foundation Figure: Protein Structure and Function......Page 221
Chapter 7: Protein Function and Evolution......Page 223
7.2. The Adaptive Immune Response......Page 225
7.3. The Structure of Antibodies......Page 226
7.4 Antibody:Antigen Interactions......Page 228
Shape and Charge Complementarity......Page 229
Generation of Antibody Diversity......Page 230
7.6. The Challenge of Developing an AIDS Vaccine......Page 231
7.7. Antibodies and Immunoconjugates as Potential Cancer Treatments......Page 232
7.8. Oxygen Transport from Lungs to Tissues: Protein Conformational Change Enhances Function......Page 233
7.9. The Oxygen-Binding Sites in Myoglobin and Hemoglobin......Page 234
Analysis of Oxygen Binding by Myoglobin......Page 236
Cooperative Binding and Allostery......Page 237
Changes in Hemoglobin Structure Accompanying Oxygen Binding......Page 239
A Closer Look at the Allosteric Change in Hemoglobin......Page 241
Response to pH Changes: The Bohr Effect......Page 244
Response to Chloride Ion at the a-Globin N-Terminus......Page 245
2,3-Bisphosphoglycerate......Page 246
The Structure of Eukaryotic Genes: Exons and Introns......Page 247
Substitution of DNA Nucleotides......Page 248
Evolution of the Myoglobin–Hemoglobin Family of Proteins......Page 249
Pathological Effects of Variant Hemoglobins......Page 251
7.15. Protein Function Requiring Large Conformational Changes: Muscle Contraction......Page 253
Myosin......Page 254
7.18. The Mechanism of Contraction......Page 256
Regulation of Contraction: The Role of Calcium......Page 259
Tools of Biochemistry: 7A Immunological Methods......Page 263
Chapter 8: Enzymes: Biological Catalysts......Page 265
8.2. The Diversity of Enzyme Function......Page 267
First-Order Reactions......Page 268
Transition States and Reaction Rates......Page 270
Transition State Theory Applied to Enzymatic Catalysis......Page 272
8.4. How Enzymes Act as Catalysts: Principles and Examples......Page 273
Mechanisms for Achieving Rate Acceleration......Page 274
Case Study #1: Lysozyme......Page 276
Case Study #2: Chymotrypsin, a Serine Protease......Page 278
Coenzyme Function in Catalysis......Page 281
Metal Ions in Enzymes......Page 282
Reaction Rate for a Simple Enzyme-Catalyzed Reaction: Michaelis–Menten Kinetics......Page 283
Interpreting KM, kcat, and kcat/KM......Page 285
Analysis of Kinetic Data: Testing the Michaelis–Menten Model......Page 286
Competitive Inhibition......Page 287
Uncompetitive Inhibition......Page 289
Mixed Inhibition......Page 291
Irreversible Inhibition......Page 292
Qualitative Interpretation of Km and Vmax: Application to Multisubstrate Reaction Mechanisms......Page 293
Feedback Control......Page 295
Homoallostery......Page 296
Aspartate Carbamoyltransferase: An Example of an Allosteric Enzyme......Page 297
8.9. Covalent Modifications Used to Regulate Enzyme Activity......Page 299
Pancreatic Proteases: Activation by Irreversible Protein Backbone Cleavage......Page 300
8.10. Nonprotein Biocatalysts: Catalytic Nucleic Acids......Page 301
Tools of Biochemistry: 8A How to Measure the Rates of Enzyme-Catalyzed Reactions......Page 306
Foundation Figure: Regulation of Enzyme Activity......Page 309
Chapter 9: Carbohydrates: Sugars, Saccharides, Glycans......Page 311
Alternative Designations for Enantiomers: d–l and R–S......Page 314
Tetrose Diastereomers......Page 315
Pentose Rings......Page 316
Hexose Rings......Page 318
Phosphate Esters......Page 320
Glycosides......Page 321
Distinguishing Features of Different Disaccharides......Page 322
Writing the Structure of Disaccharides......Page 323
Stability and Formation of the Glycosidic Bond......Page 324
9.4. Polysaccharides......Page 325
Storage Polysaccharides......Page 326
Cellulose......Page 327
Chitin......Page 328
Nonstructural Roles of Glycosaminoglycans......Page 329
Bacterial Cell Wall Polysaccharides; Peptidoglycan......Page 330
O-Linked Glycans......Page 331
Blood Group Antigens......Page 332
Influenza Neuraminidase, a Target for Antiviral Drugs......Page 333
Tools of Biochemistry: 9A The Emerging Field of Glycomics......Page 336
Chapter 10: Lipids, Membranes, and Cellular Transport......Page 337
Fatty Acids......Page 339
Triacylglycerols: Fats......Page 341
10.2. The Lipid Constituents of Biological Membranes......Page 342
Glycerophospholipids......Page 343
Sphingolipids and Glycosphingolipids......Page 344
Cholesterol......Page 345
10.3. The Structure and Properties of Membranes and Membrane Proteins......Page 346
Motion in Synthetic Membranes......Page 347
The Asymmetry of Membranes......Page 348
Characteristics of Membrane Proteins......Page 349
Insertion of Proteins into Membranes......Page 350
Evolution of the Fluid Mosaic Model of Membrane Structure......Page 352
The Thermodynamics of Transport......Page 354
Nonmediated Transport: Diffusion......Page 355
Carriers......Page 356
Permeases......Page 357
Pore-Facilitated Transport......Page 358
Ion Selectivity and Gating......Page 359
10.5. Ion Pumps: Direct Coupling of ATP Hydrolysis to Transport......Page 361
10.6. Ion Transporters and Disease......Page 363
10.7. Cotransport Systems......Page 364
The Resting Potential......Page 365
The Action Potential......Page 366
Toxins and Neurotransmission......Page 367
Foundation Figure: Targeting Pain and Inflammation through Drug Design......Page 371
Chapter 11: Chemical Logic of Metabolism......Page 373
11.1. A First Look at Metabolism......Page 375
Central Pathways of Energy Metabolism......Page 376
Distinct Pathways for Biosynthesis and Degradation......Page 379
Nucleophilic Substitutions......Page 380
Carbonyl Condensations......Page 381
Oxidation as a Metabolic Energy Source......Page 383
Energy Yields, Respiratory Quotients, and Reducing Equivalents......Page 384
ATP as a Free Energy Currency......Page 385
Metabolite Concentrations and Solvent Capacity......Page 387
Thermodynamic Properties of ATP......Page 388
Kinetic Control of Substrate Cycles......Page 389
Other High-Energy Phosphate Compounds......Page 390
Control of Enzyme Levels......Page 391
Compartmentation......Page 392
Hormonal Regulation......Page 393
Distributive Control of Metabolism......Page 394
Whole Cells......Page 395
Metabolic Probes......Page 396
Tools of Biochemistry: 11A Metabolomics......Page 400
Tools of Biochemistry: 11B Radioactive and Stable Isotopes......Page 403
Foundation Figure: Enzyme Kinetics and Drug Action......Page 405
Chapter 12: Carbohydrate Metabolism: Glycolysis, Gluconeogenesis, Glycogen Metabolism, and the Pentose Phosphate Pathway......Page 407
Anaerobic and Aerobic Glycolysis......Page 410
Reaction 1: The First ATP Investment......Page 412
Reaction 4: Cleavage to Two Triose Phosphates......Page 414
Reaction 5: Isomerization of Dihydroxyacetone Phosphate......Page 415
Reaction 7: The First Substrate-Level Phosphorylation......Page 416
Reaction 8: Preparing for Synthesis of the Next High-Energy Compound......Page 417
Reaction 10: The Second Substrate-Level Phosphorylation......Page 418
Lactate Metabolism......Page 419
Ethanol Metabolism......Page 421
12.4. Energy and Electron Balance Sheets......Page 422
Physiological Need for Glucose Synthesis in Animals......Page 423
Bypass 1: Conversion of Pyruvate to Phosphoenolpyruvate......Page 424
Bypass 3: Conversion of Glucose-6-phosphate to Glucose......Page 425
Lactate......Page 426
The Pasteur Effect......Page 427
Reciprocal Regulation of Glycolysis and Gluconeogenesis......Page 428
Fructose-2,6-bisphosphate and the Control of Glycolysis and Gluconeogenesis......Page 429
Regulation at the Hexokinase/Glucose-6-Phosphatase Substrate Cycle......Page 432
Disaccharide Metabolism......Page 433
Hydrolytic and Phosphorolytic Cleavages......Page 434
Glycogen Breakdown......Page 435
Biosynthesis of UDP-Glucose......Page 436
The Glycogen Synthase Reaction......Page 437
Structure of Glycogen Phosphorylase......Page 438
Proteins in the Glycogenolytic Cascade......Page 439
Nonhormonal Control of Glycogenolysis......Page 440
Control of Glycogen Synthase Activity......Page 441
Congenital Defects of Glycogen Metabolism in Humans......Page 442
12.10. A Biosynthetic Pathway That Oxidizes Glucose: The Pentose Phosphate Pathway......Page 443
Production of Six-Carbon and Three-Carbon Sugar Phosphates......Page 444
Tailoring the Pentose Phosphate Pathway to Specific Needs......Page 446
Regulation of the Pentose Phosphate Pathway......Page 447
Human Genetic Disorders Involving Pentose Phosphate Pathway Enzymes......Page 448
Chapter 13: The Citric Acid Cycle......Page 453
The Three Stages of Respiration......Page 456
Chemical Strategy of the Citric Acid Cycle......Page 457
Overview of Pyruvate Oxidation and the Pyruvate Dehydrogenase Complex......Page 459
Coenzymes Involved in Pyruvate Oxidation and the Citric Acid Cycle......Page 460
Coenzyme A: Activation of Acyl Groups......Page 461
Flavin Adenine Dinucleotide (FAD)......Page 462
Action of the Pyruvate Dehydrogenase Complex......Page 464
Step 1: Introduction of Two Carbon Atoms as Acetyl-CoA......Page 466
Step 2: Isomerization of Citrate......Page 467
Step 4: Conservation of Energy in NADH by a Second Oxidative Decarboxylation......Page 468
Step 5: A Substrate-Level Phosphorylation......Page 469
Step 8: An Oxidation that Regenerates Oxaloacetate......Page 470
13.5. Regulation of Pyruvate Dehydrogenase and the Citric Acid Cycle......Page 471
Control of Pyruvate Oxidation......Page 472
13.6. Organization and Evolution of the Citric Acid Cycle......Page 473
13.8. Anaplerotic Sequences: The Need to Replace Cycle Intermediates......Page 474
Reactions Involving Amino Acids......Page 475
13.9. The Glyoxylate Cycle: An Anabolic Variant of the Citric Acid Cycle......Page 476
Tools of Biochemistry: 13A Detecting and Analyzing Protein–Protein Interactions......Page 481
Chapter 14: Electron Transport, Oxidative Phosphorylation, and Oxygen Metabolism......Page 483
14.2. Free Energy Changes in Biological Oxidations......Page 486
Coenzyme Q......Page 489
Cytochromes......Page 490
NADH–Coenzyme Q Reductase (Complex I)......Page 491
Succinate–Coenzyme Q Reductase (Complex II; Succinate Dehydrogenase)......Page 493
Coenzyme Q:Cytochrome c Oxidoreductase (Complex III)......Page 494
Cytochrome c Oxidase (Complex IV)......Page 495
The P/O Ratio: Energetics of Oxidative Phosphorylation......Page 496
Oxidative Reactions That Drive ATP Synthesis......Page 497
Mechanism of Oxidative Phosphorylation: Chemiosmotic Coupling......Page 498
An Intact Inner Membrane Is Required for Oxidative Phosphorylation......Page 499
Discovery and Reconstitution of ATP Synthase......Page 500
Mechanism of ATP Synthesis......Page 502
14.5. Respiratory States and Respiratory Control......Page 505
Transport of Substrates and Products into and out of Mitochondria......Page 508
Shuttling Cytoplasmic Reducing Equivalents into Mitochondria......Page 509
14.8. The Mitochondrial Genome, Evolution, and Disease......Page 510
Cytochrome P450 Monooxygenase......Page 512
Dealing with Oxidative Stress......Page 513
Foundation Figure: Intermediary Metabolism......Page 517
Chapter 15: Photosynthesis......Page 519
15.1. The Basic Processes of Photosynthesis......Page 523
15.2. The Chloroplast......Page 524
The Light-Absorbing Pigments......Page 525
The Light-Gathering Structures......Page 526
Photochemistry in Plants and Algae: Two Photosystems in Series......Page 528
Photosystem II: The Splitting of Water......Page 530
Photosystem I: Production of NADPH......Page 532
Summation of the Two Systems: The Overall Reaction and NADPH and ATP Generation......Page 533
Evolution of Photosynthesis......Page 535
15.4. The Carbon Reactions: The Calvin Cycle......Page 536
Incorporation of CO2 into a Three-Carbon Sugar......Page 537
Stage II: Regeneration of the Acceptor......Page 538
Regulation of Photosynthesis......Page 539
15.6. Photorespiration and the C4 Cycle......Page 540
Chapter 16: Lipid Metabolism......Page 545
Fat Digestion and Absorption......Page 548
Classification and Functions of Lipoproteins......Page 550
Transport and Utilization of Lipoproteins......Page 551
Cholesterol Transport and Utilization in Animals......Page 552
The LDL Receptor and Cholesterol Homeostasis......Page 553
Cholesterol, LDL, and Atherosclerosis......Page 555
Early Experiments......Page 556
Fatty Acid Activation and Transport into Mitochondria......Page 558
The ß-Oxidation Pathway......Page 559
Reaction 4: Thiolytic Cleavage......Page 560
Energy Yield from Fatty Acid Oxidation......Page 561
Oxidation of Unsaturated Fatty Acids......Page 562
Control of Fatty Acid Oxidation......Page 563
Ketogenesis......Page 564
Relationship of Fatty Acid Synthesis to Carbohydrate Metabolism......Page 565
Synthesis of Malonyl-CoA......Page 566
Malonyl-CoA to Palmitate......Page 567
Multifunctional Proteins in Fatty Acid Synthesis......Page 569
Transport of Acetyl Units and Reducing Equivalents into the Cytosol......Page 570
Fatty Acid Desaturation......Page 571
Control of Fatty Acid Synthesis......Page 572
16.4. Biosynthesis of Triacylglycerols......Page 573
16.5. Glycerophospholipids......Page 574
16.6. Sphingolipids......Page 575
Steroids: Some Structural Considerations......Page 576
Early Studies of Cholesterol Biosynthesis......Page 577
Stage 3: Cyclization of Squalene to Lanosterol and Its Conversion to Cholesterol......Page 578
Control of Cholesterol Biosynthesis......Page 579
Vitamin D......Page 581
Vitamin A......Page 583
16.8. Eicosanoids: Prostaglandins, Thromboxanes, and Leukotrienes......Page 584
Chapter 17: Interorgan and Intracellular Coordination of Energy Metabolism in Vertebrates......Page 589
Brain......Page 591
Blood......Page 593
Actions of the Major Hormones......Page 594
Glucagon......Page 595
AMP-Activated Protein Kinase (AMPK)......Page 596
Mammalian Target of Rapamycin (mTOR)......Page 597
Sirtuins......Page 598
Endocrine Regulation of Energy Homeostasis......Page 599
17.3. Responses to Metabolic Stress: Starvation, Diabetes......Page 600
Starvation......Page 601
Diabetes......Page 602
Foundation Figure: Energy Regulation......Page 607
Chapter 18: Amino Acid and Nitrogen Metabolism......Page 609
Biological Nitrogen Fixation......Page 612
Glutamate Dehydrogenase: Reductive Amination of a-Ketoglutarate......Page 614
Metabolic Consequences of the Absence of Nitrogen Storage Compounds......Page 615
Intracellular Proteases and Sites of Turnover......Page 616
Pyridoxal Phosphate......Page 617
Discovery and Chemistry of Folic Acid......Page 619
Tetrahydrofolate in the Metabolism of One-Carbon Units......Page 620
B12 Coenzymes......Page 622
Transamination Reactions......Page 623
Transport of Ammonia to the Liver......Page 624
The Krebs–Henseleit Urea Cycle......Page 625
Pyruvate Family of Glucogenic Amino Acids......Page 627
a-Ketoglutarate Family of Glucogenic Amino Acids......Page 628
Acetoacetate/Acetyl-CoA Family of Ketogenic Amino Acids......Page 629
Phenylalanine and Tyrosine Degradation......Page 631
Biosynthetic Capacities of Organisms......Page 632
Synthesis of Serine and Glycine from 3-Phosphoglycerate......Page 633
Synthesis of Valine, Leucine, and Isoleucine from Pyruvate......Page 634
S-Adenosylmethionine and Biological Methylation......Page 635
Tryptophan and Tyrosine Are Precursors of Neurotransmitters and Biological Regulators......Page 637
Chapter 19: Nucleotide Metabolism......Page 643
Biosynthetic Routes: De Novo and Salvage Pathways......Page 645
PRPP, a Central Metabolite in De Novo and Salvage Pathways......Page 646
Synthesis of the Purine Ring......Page 647
Synthesis of ATP and GTP from Inosine Monophosphate......Page 649
Uric Acid, a Primary End Product......Page 650
Gout......Page 651
Severe Combined Immunodeficiency Disease......Page 652
De Novo Biosynthesis of UTP and CTP......Page 653
Glutamine-Dependent Amidotransferases......Page 654
Reduction of Ribonucleotides to Deoxyribonucleotides......Page 655
Regulation of Ribonucleotide Reductase Activity......Page 656
Biosynthesis of Thymine Deoxyribonucleotides......Page 659
Salvage Routes to Deoxyribonucleotides......Page 660
Thymidylate Synthase: A Target Enzyme for Chemotherapy......Page 662
19.6. Virus-Directed Alterations of Nucleotide Metabolism......Page 664
19.7. Other Medically Useful Analogs......Page 665
Chapter 20: Mechanisms of Signal Transduction......Page 669
20.1. An Overview of Hormone Action......Page 671
Hierarchical Nature of Hormonal Control......Page 672
Receptors and Adenylate Cyclase as Distinct Components of Signal Transduction Systems......Page 673
Structural Analysis of G Protein-Coupled Receptors......Page 674
Actions of G Proteins......Page 675
The Versatility of G Proteins......Page 676
Effectors......Page 677
Cyclic GMP and Nitric Oxide......Page 678
Phosphoinositides......Page 679
20.3. Receptor Tyrosine Kinases and Insulin Signaling......Page 681
20.4. Hormones and Gene Expression: Nuclear Receptors......Page 683
Viral and Cellular Oncogenes......Page 686
Oncogenes in Human Tumors......Page 687
The Cancer Genome Mutational Landscape......Page 688
The Cholinergic Synapse......Page 689
Fast and Slow Synaptic Transmission......Page 690
Actions of Specific Neurotransmitters......Page 691
Peptide Neurotransmitters and Neurohormones......Page 692
Foundation Figure: Cell Signaling and Protein Regulation......Page 695
Chapter 21: Genes, Genomes, and Chromosomes......Page 697
Bacterial Genomes— The Nucleoid......Page 699
Genome Sizes......Page 700
Satellite DNA......Page 701
Introns......Page 702
The Nucleus......Page 703
Chromatin......Page 704
The Nucleosome......Page 705
21.4. Nucleotide Sequence Analysis of Genomes......Page 707
Restriction and Modification......Page 708
Properties of Restriction and Modification Enzymes......Page 709
Determining Genome Nucleotide Sequences......Page 710
The Principle of Southern Analysis......Page 711
Locating Genes on the Human Genome......Page 713
Size of the Human Genome......Page 714
Tools of Biochemistry: 21A Polymerase Chain Reaction......Page 717
Chapter 22: DNA Replication......Page 719
22.1. Early Insights into DNA Replication......Page 721
22.2. DNA Polymerases: Enzymes Catalyzing Polynucleotide Chain Elongation......Page 722
Structure of DNA Polymerase I......Page 723
Structure and Mechanism of DNA Polymerases......Page 724
Genetic Maps of E. coli and Bacteriophage T4......Page 725
Discontinuous DNA Synthesis......Page 726
Proteins at the Replication Fork......Page 728
The DNA Polymerase III Holoenzyme......Page 729
Single-Stranded DNA-Binding Proteins: Maintaining Optimal Template Conformation......Page 730
Helicases: Unwinding DNA Ahead of the Fork......Page 731
Actions of Type I and Type II Topoisomerases......Page 732
A Model of the Replisome......Page 734
Other Eukaryotic Replication Proteins......Page 735
Replication of Chromatin......Page 736
Initiation of E. coli DNA Replication at ori c......Page 737
Linear Virus Genome Replication......Page 738
Telomerase......Page 739
3' Exonucleolytic Proofreading......Page 740
Polymerase Insertion Specificity......Page 741
Ribonucleotide Incorporation and Genomic Stability......Page 742
Replication of Retroviral Genomes......Page 743
Chapter 23: DNA Repair, Recombination, and Rearrangement......Page 747
Types and Consequences of DNA Damage......Page 749
O6-Alkylguanine Alkyltransferase......Page 751
Nucleotide Excision Repair: Excinucleases......Page 752
Replacement of Uracil in DNA by BER......Page 754
Mismatch Repair......Page 755
Double-Strand Break Repair......Page 757
Translesion Synthesis and the DNA Damage Response......Page 758
Site-Specific Recombination......Page 759
Models for Recombination......Page 760
Proteins Involved in Homologous Recombination......Page 761
Immunoglobulin Synthesis: Generating Antibody Diversity......Page 763
Transposable Genetic Elements......Page 765
Retroviruses......Page 766
Gene Amplification......Page 767
Tools of Biochemistry: 23A Manipulating the Genome......Page 771
Foundation Figure: Antibody Diversity and Use as Therapeutics......Page 773
Chapter 24: Transcription and Posttranscriptional Processing......Page 775
The Predicted Existence of Messenger RNA......Page 777
T2 Bacteriophage and the Demonstration of Messenger RNA......Page 778
RNA Dynamics in Uninfected Cells......Page 779
Biological Role of RNA Polymerase......Page 780
Structure of RNA Polymerase......Page 781
Initiation of Transcription: Interactions with Promoters......Page 782
Initiation and Elongation: Incorporation of Ribonucleotides......Page 783
Punctuation of Transcription: Termination......Page 784
Factor-Independent Termination......Page 785
24.4. Transcription in Eukaryotic Cells......Page 786
RNA Polymerase III: Transcription of Small RNA Genes......Page 787
RNA Polymerase II: Transcription of Structural Genes......Page 788
Chromatin Structure and Transcription......Page 789
Bacterial mRNA Turnover......Page 790
tRNA Processing......Page 791
Splicing......Page 792
Alternative Splicing......Page 794
Tools of Biochemistry: 24A Analyzing the Transcriptome......Page 797
Tools of Biochemistry: 24B Chromatin Immunoprecipitation......Page 798
Chapter 25: Information Decoding: Translation and Posttranslational Protein Processing......Page 799
25.1. An Overview of Translation......Page 801
How the Code Was Deciphered......Page 802
Features of the Code......Page 803
The Wobble Hypothesis......Page 804
Punctuation: Stopping and Starting......Page 805
Transfer RNA......Page 806
Aminoacyl-tRNA Synthetases: The First Step in Protein Synthesis......Page 808
The Ribosome and Its Associated Factors......Page 810
Components of Ribosomes......Page 811
Internal Structure of the Ribosome......Page 812
Initiation......Page 815
Elongation......Page 816
Termination......Page 818
Suppression of Nonsense Mutations......Page 819
25.5. Inhibition of Translation by Antibiotics......Page 820
25.6. Translation in Eukaryotes......Page 821
25.8. The Final Stages in Protein Synthesis: Folding and Covalent Modification......Page 822
Covalent Modification......Page 823
Proteins Synthesized in the Cytoplasm......Page 824
Role of the Golgi Complex......Page 826
Chapter 26: Regulation of Gene Expression......Page 829
The Lactose Operon—Earliest Insights into Transcriptional Regulation......Page 831
The Repressor Binding Site......Page 833
The CRP–DNA Complex......Page 835
Bacteriophage .: Multiple Operators, Dual Repressors, Interspersed Promoters and Operators......Page 836
The SOS Regulon: Activation of Multiple Operons by a Common Set of Environmental Signals......Page 838
Biosynthetic Operons: Ligand-Activated Repressors and Attenuation......Page 839
Chromatin and Transcription......Page 841
Transcriptional Control Sites and Genes......Page 842
Nucleosome Remodeling Complexes......Page 843
Regulation of the Elongation Cycle by RNA Polymerase Phosphorylation......Page 844
DNA Methylation in Eukaryotes......Page 845
Genomic Distribution of Methylated Cytosines......Page 846
Regulation of Bacterial Translation......Page 847
Phosphorylation of Eukaryotic Initiation Factors......Page 848
MicroRNAs......Page 849
26.6. Riboswitches......Page 850
26.7. RNA Editing......Page 851
Foundation Figure: Information Flow in Biological Systems......Page 855
Appendix I: Answers to Selected Problems......Page 858
Appendix II: References......Page 877
Credits......Page 890
Index......Page 894
Back Cover......Page 934