ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biochemistry education: from theory to practice

دانلود کتاب آموزش بیوشیمی: از نظریه تا عمل

Biochemistry education: from theory to practice

مشخصات کتاب

Biochemistry education: from theory to practice

ویرایش:  
نویسندگان: , , ,   
سری: ACS symposium series 1337 
ISBN (شابک) : 9780841236332, 084123633X 
ناشر: American Chemical Society 
سال نشر: 2019 
تعداد صفحات: 351 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 21 مگابایت 

قیمت کتاب (تومان) : 49,000



کلمات کلیدی مربوط به کتاب آموزش بیوشیمی: از نظریه تا عمل: بیوشیمی -- مطالعه و تدریس (عالی) ، بیوشیمی -- مطالعه و تدریس (عالی)



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Biochemistry education: from theory to practice به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب آموزش بیوشیمی: از نظریه تا عمل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب آموزش بیوشیمی: از نظریه تا عمل

کمی سازی انواع نمایش های مورد استفاده در کتاب های درسی رایج بیوشیمی - کاوش مجازی ساختار و عملکرد بیومولکولی - مدل های فیزیکی از یادگیری فعال به عنوان ابزار تفکر موثر پشتیبانی می کنند - مهارت ها و مفاهیم اساسی برای دانشجویان بیوشیمی - اجرای تحقیق هدایت شده در بیوشیمی: چالش ها و فرصت ها - توسعه و استفاده از مطالعات موردی - توسعه و استفاده از درمان‌ها در بیوشیمی - نوت‌بوک‌های الکترونیکی آزمایشگاهی - ارزیابی تکوینی برای بهبود یادگیری دانش‌آموزان در بیوشیمی - بهترین شیوه‌ها در ارزیابی خلاصه - به تنهایی پیش نروید: اهمیت انجمن و تحقیق در پیاده سازی و حفظ آموزش نوآورانه - Vignette # 1: معرفی یادگیری فعال برای بهبود عملکرد دانش آموزان در مفاهیم آستانه در بیوشیمی - Vignette # 2: تغییر به فعالیت های درون کلاسی در کلاس درس بیوشیمی - Vignette # 3: توسعه مهارت دانش‌آموز در خواندن ادبیات بیوشیمی - Vignette شماره 4: اجرای آزمایش‌های الهام‌گرفته از pogil در آزمایشگاه بیوشیمی - Vignette شماره 5: گنجاندن پروژه‌های مبتنی بر موضوع، مشتق شده از دانش‌آموز در برنامه درسی آزمایشگاه بیوشیمی.


توضیحاتی درمورد کتاب به خارجی

Quantifying the types of representations used in common biochemistry textbooks -- Virtual exploration of biomolecular structure and function -- Physical models support active learning as effective thinking tools -- Skills and foundational concepts for biochemistry students -- Implementing guided inquiry in biochemistry : challenges and opportunities -- The development and use of case studies -- Development and use of cures in biochemistry -- Lab eNotebooks -- Formative assessment to improve student learning in biochemistry -- Best practices in summative assessment -- Don't go it alone : the importance of community and research in implementing and maintaining innovative pedagogy -- Vignette #1 : introducing active learning to improve student performance on threshold concepts in biochemistry -- Vignette #2 : making a switch to in-class activities in the biochemistry classroom -- Vignette #3 : developing student proficiency in reading biochemical literature -- Vignette #4 : implementation of pogil-inspired experiments in the biochemistry laboratory -- Vignette #5 : incorporating topic-focused, student-derived projects in the biochemistry laboratory curriculum.



فهرست مطالب

Biochemistry Education: From Theory to Practice......Page 2
Biochemistry Education: From Theory to Practice......Page 4
Library of Congress Cataloging-in-Publication Data......Page 5
Foreword......Page 6
Best Practices in Summative Assessment......Page 8
Subject Index......Page 9
Preface......Page 10
References......Page 11
Visual Literacy......Page 12
Quantifying the Types of Representations Used in Common Biochemistry Textbooks......Page 14
Types of External Representations in Biochemistry......Page 15
Modes of External Representations......Page 16
Potential Outcomes of Using External Representations......Page 17
Potential Benefits of Using External Representations......Page 18
Potential Negative Results of Using External Representations......Page 19
Sample Collection and Analysis......Page 21
What Types of Representations Are Most Prevalently Used in Biochemistry Textbooks?......Page 22
Figure 2. Percentage of representations in each type of representation by textbook.......Page 23
Figure 3. Percentage of representations based on the number of types of representations included.......Page 24
Is There a Difference in the Types of Representations Used Depending on the Content Discussed?......Page 25
Figure 6. Percentage of types of representations by content covered. Solid colored categories indicate single representations and patterned categories indicate use of multiple representations.......Page 26
Discussion......Page 27
Implications, Limitations and Future Areas of Research......Page 28
References......Page 29
Virtual Exploration of Biomolecular Structure and Function......Page 32
Introduction......Page 33
Visual Communication of Molecular Structures: A Brief History......Page 34
Structural Data: Source, Assumptions, Errors......Page 37
Figure 2. Engineered proteins used for molecular structure determination. A. Cytoplasmic domain of the insulin receptor tyrosine kinase in ribbon representation, PDB ID 1irk 43; B. Yellow fluorescent protein-glutaredoxin fusion protein shown in ribbon representation, PDB ID 2jad 44; C. Ribbon representation of human insulin receptor ectodomain in complex with four Fab fragments (in grey and circled), PDB ID 4zxb 45; D. HIV-1 reverse transcriptase, with an active site residue mutation (D498N), PDB ID 3v6d 46, the nuclease and polymerase domains in the structure are marked with circles; E. Cytoplasmic domain of the insulin receptor tyrosine kinase in ribbon representation, complexed with a substrate peptide (magenta and circled) and ATP (ball and stick representation and circled), PDB ID 3bu5 47. All structural images in this figure were created with UCSF Chimera.......Page 39
Figure 3. Method- and experiment-specific manipulations of PDB coordinate data prior to virtual exploration. A. Structure of the oxyhemoglobin asymmetric unit (top) and biological assembly (bottom), PDB ID 1hho 48; B. Structure ensemble of human translation initiation factor eIF1A (top) and representative model (bottom), PDB ID 1d7q 49; C. Structure of the Dengue virus icosahedral unit (top) and complete virus (bottom), PDB ID 1k4r 50. All structural images in this figure were created with UCSF Chimera.......Page 40
Visualization Tools: Affordances and Constraints......Page 41
Scientific Practices for Visual Comprehension......Page 42
Assessment of Virtual Biomolecular Visual Literacy......Page 43
Educational Resources......Page 44
Conclusions......Page 46
References......Page 47
Introduction......Page 54
Figure 1. Physical models of molecular structures. A. An amino acid – constructed by students using a small molecule kit. Models B-E are “assemblies of atoms,” constructed by 3D printing. B. ATP with magnet-docked phosphate groups. C. A zinc finger (PDB ID: 1ZAA) D. A four-subunit potassium channel (PDB ID: 1J95). E. The 70S E. coli ribosome (PDB ID: 4V5D) with magnet-docked large and small subunits, three tRNAs and a short stretch of mRNA.......Page 56
Modeling Projects......Page 57
Case Study II: Carbohydrate Models......Page 58
Case Study III: Serine Protease Active Site Models......Page 60
Figure 3. Serine protease physical model. A. Backbone, surface place, substrate epimers, and inhibitor for chymotrypsin. B. Surface plate snapped on top of backbone with the substrate epimers and inhibitor on the left side. C. Substrate bound in the active site. Photos courtesy of Cassidy Terrell.......Page 62
Case Study IV: Flow of Genetic Information Models......Page 63
Figure 5. Model based activities showed dramatic learning gains for all students, including low performers (bottom quartile) and deaf/hard of hearing (D/HH). In this analysis, each multiple-select question was scored as right or wrong (no partial credit). Students were ranked in quartiles by their scores on the entire CDCI at the beginning of the semester, although their performance is shown only for questions related to model-taught concepts. Dotted lines show that on average, D/HH students fell between the 2nd and 3rd quartile, both pre and post instruction. Error bars are SEM, n=426 with 34 D/HH.......Page 64
Reduction of Cognitive Load......Page 65
Conclusions and Future Directions......Page 66
Acknowledgments......Page 67
References......Page 68
Pedagogies and Practices......Page 74
Introduction: Concepts Conquer Content......Page 76
Figure 1. Key features of the vision and change recommendations for biology education.......Page 77
Figure 2. Summary of concepts and skills recommended by the American Society for Biochemistry and Molecular Biology.......Page 80
Figure 3. Concept (mind) map of key features of non-covalent interactions and the roles they play in protein structure and function.......Page 81
What Is Modern Biochemistry and Molecular Biology?......Page 87
Current Curricula Recommendations......Page 88
The Central Role That Undergraduate Research Plays in Undergraduate Education in the Molecular Life Sciences......Page 90
Figure 4. Essential elements in a student generated research hypothesis and proposal.......Page 91
A Student-Centered Curriculum......Page 95
Peer Review......Page 96
Figure 6. Consensus mind map of central concepts of reactions and interactions generated from class discussion.......Page 97
Gateway Concepts......Page 98
Quantitative Skills in the Curriculum......Page 99
Communication: Writing and Presentation Skills......Page 100
The Central Role That Accessing and Assessing Knowledge Plays in Undergraduate Life Science Education......Page 101
Content versus Concept Revisited......Page 102
How Could the Ideal Curriculum be Structured?......Page 105
The Critical Role of Inclusive Teaching......Page 106
Appendix: Based upon, with Expanded Detail, Wright et al. 9 “Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for ‘Biochemistry and Molecular Biology’ Majors”......Page 107
References......Page 115
Introduction to Active Learning......Page 122
Guided Inquiry: History and Characteristics......Page 123
Process Oriented Guided Inquiry Learning......Page 124
Guided Inquiry Teaching Materials for Biochemistry......Page 125
Supporting Process Skills Development in the Biochemistry Classroom......Page 128
The Role of the Teacher in the Guided Inquiry Classroom......Page 129
Creating and Using Facilitation Plans......Page 130
Navigating Challenges......Page 131
References......Page 132
Introduction......Page 138
Given the Variety of Evidence-Based Pedagogies, Why Should I Choose Case Studies?......Page 139
Figure 1. Visual representations of the potassium ion channel. A: a ribbon diagram of the ion channel in the plasma membrane, made up of 3 subunits of alpha helices labeled in yellow, lavender and cyan. B: The helices are shown as cylinders, using the same color scheme as A. Potassium ions are shown as green spheres. C: A close-up of the potassium binding site. Carbonyl oxygens are shown in red. Created using PYMOL Molecular Graphics System (Schrodinger, LLC) and PDB ID 1BL8.......Page 141
The Types of Cases We Use......Page 143
A Typical Week in Our Course......Page 145
Structuring and Facilitating Group Work......Page 146
Summative Assessment......Page 147
Closing Thoughts......Page 148
References......Page 149
Why Undergraduate Research and CUREs......Page 154
What Is a CURE?......Page 157
Developing a Hypothesis as Part of “Scientific Practices” Activity......Page 162
Bioinformatics Tools to Develop a Hypothesis......Page 163
Finalize Proposal......Page 164
How Far Along Are We?......Page 165
The Evolution of CURES......Page 166
SEA-Phages (www.seaphages.org)......Page 167
Malate Dehydrogenase CUREs Community (MCC; www.mdh-cures-community.squarespace.com/contact)......Page 168
Other CURE Examples......Page 169
Chemistry......Page 170
Biology......Page 171
Pedagogical Research: CURE Learning Outcomes and Assessment......Page 172
Practical Approaches: Organizing Your CURE......Page 176
References......Page 177
Lab Notebooks in the Literature – History and Role of Lab Notebooks......Page 184
Brief Introduction to Development of ELNs from Shared Computer Files or Drives to Formal Electronic Systems That Are Cloud-Based.......Page 185
Google Drive......Page 187
OneNote......Page 189
Evernote......Page 190
Commercial ELNs......Page 192
LabArchives......Page 193
RSpace......Page 195
labfolder......Page 196
Instructor Perspective......Page 197
Student Perspective......Page 201
Training......Page 202
References......Page 203
Introduction......Page 208
The Role of Assessment in Transforming Biochemistry Teaching and Learning......Page 209
Formative Assessment and Feedback Support Learning......Page 211
Assessment within the Disciplinary Context of Biochemistry......Page 212
Figure 1. Visual representation is just one of the multiple facets of biochemical knowledge. All three figure panels demonstrate different ways of representing and making sense of protein stability.......Page 214
Promising Practice #1: Optimize Cognitive Load to Facilitate Schema Development......Page 215
Figure 2. Example of formative assessment prompts that can target the same biochemical principle and use the same level of visual abstraction, allowing more precise insights into students’ abilities to reason across cognitive levels.......Page 217
Figure 3. Example of formative assessment prompts that assess students’ understanding of a concept using difference levels of visual abstraction (Prompt #1 vs. Prompt #2) while holding the cognitive skill level constant (“How does the described mutation affect the stability of the protein?).......Page 218
Promising Practice #2: Use Assessments to Facilitate Retrieval of Relevant Information......Page 219
Promising Practice #3: Use a Range of Formative Assessment Prompts to Diagnose and Respond to Students’ In-Progress Learning......Page 221
References......Page 223
The Purposes of Assessment......Page 230
Course Revision......Page 231
Curriculum Development......Page 232
Additional Resources......Page 233
Categorizing Learning Outcomes......Page 234
Figure 1. Sample summative assessment question.......Page 236
Types of Questions Used for Summative Assessments......Page 237
Multiple Choice Questions (MCQ)......Page 238
True/False......Page 240
Essay (Large Project) Prompt......Page 241
Summative Assignments......Page 242
Considerations......Page 243
Exams......Page 244
Considerations......Page 245
Presentations......Page 246
Fair Grading Practices......Page 247
Question/Assignment Grading......Page 248
Training and Reviewing Graders......Page 249
Tips for Grading Faster and More Accurately (i.e. for Large Classes)......Page 250
Larger Projects......Page 251
References......Page 252
Implementation......Page 256
Introduction......Page 258
Importance of Communities......Page 259
Core Collaborators Workshop......Page 260
Figure 1. Number of active learning activities implemented by workshop participants after attending at least one workshop. Participants are categorized by the number of workshops attended: one workshop (5 respondents), two or three (4 respondents), four (5 respondents), or more than five (4 respondents) CCWs attended. The number of responses in each category are indicated in the bar graphs as either, no increase (black), increase in 1 to 5 activities (gray), and increase in 6+ activities (hashed). There were a total of 7 CCW events held and 58 participants were sent surveys with 19 collaborators responding.......Page 262
Challenges and Ways to Overcome Them......Page 264
Communities Foster Research......Page 265
Moving Forward......Page 266
References......Page 267
Introduction......Page 272
Bridging Threshold Concepts and Foundational Concepts......Page 273
An Iterative Process for Introducing Active Learning......Page 274
Literature Review and Pre-assessment of Foundational Concepts......Page 275
Identification of Potential Concept Interventions......Page 276
Workbook......Page 277
Problem-Based Worksheets......Page 278
Learning Cycle Activity......Page 279
Re-assessment and Revision......Page 280
References......Page 282
Introduction: Transition to Half Lecture and Half In-Class Activities......Page 286
Active Learning Pedagogies......Page 287
Active Learning Modifications to Biochemistry I......Page 288
Impact on Attendance......Page 289
Biochemistry I ACS Final Exam Scores......Page 290
Impact on Ratings of Instruction......Page 291
Opportunity to Introduce a CURE......Page 292
In-Class Activity Development......Page 294
Unfolding of the Learning Process......Page 295
Goals......Page 296
Feedback and Assessment......Page 297
References......Page 298
The Warburg Project......Page 302
Student Feedback......Page 303
References......Page 304
Introduction......Page 306
Figure 1. POGIL learning cycle with the approached used in the biochemistry labs at Auburn University.......Page 308
Background......Page 309
Thinking about the Data: Part 1......Page 310
Experiment Phase 2......Page 311
Pre-experiment Questions......Page 312
General Protocol......Page 313
Pre-experiment Questions......Page 314
Figure 3. Pathway for melanin production showing the reactions catalyzed by tyrosinase. The molar absorptivity of dopachrome 2 is 3600 M-1cm-1.......Page 315
Chemicals......Page 316
Biomass (Corn or Other Samples)......Page 317
Chemicals......Page 318
Pre-experiment Questions......Page 319
Chemicals......Page 320
Background......Page 321
References......Page 322
Original Research in the Undergraduate Curriculum......Page 324
Alternate Approaches......Page 325
Advantages of the Topic-Focused, Student-Derived Project Model......Page 326
Project Guidelines......Page 327
Proposal Requirements......Page 328
Kinetic Studies......Page 329
Inhibition......Page 330
Effects of Temperature on Enzyme Stability......Page 331
Figure 2. pH dependence of heart and muscle LDH.......Page 332
Exploration of the Relationship Between Structure and Function of Lactate Dehydrogenase from Rabbit Muscle through Heat Denaturation......Page 333
Figure 5. Time dependent loss of LDH activity.......Page 334
Figure 7. Effects of temperature on alpha helical secondary structure.......Page 335
Comments and Practical Considerations......Page 336
Conclusions......Page 337
References......Page 338
Rodney C. Austin......Page 340
Indexes......Page 342
Author Index......Page 344
B......Page 346
I......Page 349
S......Page 350
T......Page 351




نظرات کاربران