ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biochar in Agriculture for Achieving Sustainable Development Goals

دانلود کتاب بیوچار در کشاورزی برای دستیابی به اهداف توسعه پایدار

Biochar in Agriculture for Achieving Sustainable Development Goals

مشخصات کتاب

Biochar in Agriculture for Achieving Sustainable Development Goals

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 0323853439, 9780323853439 
ناشر: Academic Press 
سال نشر: 2022 
تعداد صفحات: 413
[414] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 27 Mb 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Biochar in Agriculture for Achieving Sustainable Development Goals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب بیوچار در کشاورزی برای دستیابی به اهداف توسعه پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب بیوچار در کشاورزی برای دستیابی به اهداف توسعه پایدار



Biochar در کشاورزی برای دستیابی به اهداف توسعه پایدار پیشرفته ترین بایوچار را برای کاربردهای کشاورزی برای تحقق اهداف توسعه پایدار و برجسته کردن چالش های فعلی و راه پیش رو معرفی می کند. این کتاب بر دانش علمی و فناوری‌های بیوچار برای بهبود خاک کشاورزی و رشد گیاهان تمرکز دارد. بخش‌ها دانش پیشرفته‌ای را در مورد تولید و شناسایی بیوچار ارائه می‌دهند، تمرکز بر بیوچار برای کاربرد کشاورزی و بهبود خاک، بحث در مورد نقش بیوچار برای بهبود محیط زیست در زمین‌های کشاورزی برای کاهش مدیریت آب و زباله و همچنین تغییرات آب و هوا، برجسته کردن بیوچار برای تقویت اقتصاد زیستی و انرژی پاک استفاده می شود و در مورد چشم اندازهای آینده بحث می شود.

این کتاب برای مهندسان و محققان کشاورزی و همچنین کسانی که به دنبال بهبود شرایط کلی خاک و محیط زیست هستند، مهم خواهد بود. استفاده از بیوچار.


توضیحاتی درمورد کتاب به خارجی

Biochar in Agriculture for Achieving Sustainable Development Goals introduces the state-of-the-art of biochar for agricultural applications to actualize sustainable development goals and highlight current challenges and the way forward. The book focuses on scientific knowledge and biochar technologies for agricultural soil improvement and plant growth. Sections provide state-of-the-art knowledge on biochar production and characterization, focus on biochar for agricultural application and soil improvement, discuss the roles of biochar for environmental improvement in farmland to relieve water and waste management as well as climate change, highlight biochar used for boosting bioeconomy and clean energy, and discuss future prospects.

This book will be important to agricultural engineers and researchers as well as those seeking to improve overall soil and environmental conditions through the use of biochar.



فهرست مطالب

Biochar in Agriculture for Achieving Sustainable Development Goals
Copyright
List of contributors
Preface
1 Agricultural waste-derived biochar for environmental management
	1.1 Introduction
	1.2 Biochar production and properties
		1.2.1 Production of biochar
		1.2.2 Biochar engineering
		1.2.3 Biochar properties
	1.3 Biochar for environmental management
		1.3.1 Soil management
		1.3.2 Air pollution control
		1.3.3 Waste management
		1.3.4 Water purification
		1.3.5 Energy production
	1.4 Summary
	Acknowledgments
	References
2 Biochar and sustainable development goals
	2.1 Introduction
	2.2 Biochar material
		2.2.1 Production of biochar
		2.2.2 Biochar properties
		2.2.3 Biochar modification and functionalization
	2.3 Sustainable soil management by biochar
		2.3.1 Soil quality improvement
		2.3.2 Contaminants immobilization
		2.3.3 Carbon sequestration
	2.4 Prospect and future recommendations
	2.5 Conclusion
	Acknowledgment
	Reference
3 Biochar and its potential to increase water, trace element, and nutrient retention in soils
	3.1 Introduction
	3.2 Biochar application into degraded soil
		3.2.1 Effects on selected physical properties
			3.2.1.1 Bulk density and porosity
			3.2.1.2 Water retention
			3.2.1.3 Saturated hydraulic conductivity
		3.2.2 Effect on selected chemical properties
			3.2.2.1 Physicochemical characteristics of soil
			3.2.2.2 Nutrient and trace element stabilization
	3.3 Conclusions and future directions to applying biochars in degraded soils
	Acknowledgment
	References
4 Biochar for carbon sequestration and environmental remediation in soil
	4.1 Biochar for carbon sequestration in soil
		4.1.1 Effect of pyrolysis conditions on the C retention of biochar
		4.1.2 Carbon sequestration effect of biochar after addition to soil
	4.2 Biochar for environmental remediation in soil
		4.2.1 Remediation effect of biochar on heavy metals and metalloid-contaminated soil
		4.2.2 Mechanisms of biochar on remediation of heavy metals and metalloid-contaminated soil
			4.2.2.1 Electrostatic attraction
			4.2.2.2 Ion exchange
			4.2.2.3 Oxidation and reduction
			4.2.2.4 Surface complexation
			4.2.2.5 Precipitation
	4.3 Conclusion and future perspectives
	References
5 Hydrochar and activated carbon materials from P- and N-rich biomass waste for environmental remediation and bioenergy app...
	5.1 Introduction
	5.2 P- and N-rich biomass waste
		5.2.1 Biomass waste valorization and (re)use
		5.2.2 Why is the need to utilize P- and N-rich biomass waste?
	5.3 Approaches and techniques to treat P- and N-rich biomass waste
		5.3.1 Preparation of hydrochar and activated carbon materials
			5.3.1.1 Conventional and microwave-assisted hydrothermal conversion
			5.3.1.2 Conventional and microwave-assisted pyrolysis
		5.3.2 Influencing factors on hydrochar and activated carbon materials preparation
	5.4 Characterization of hydrochar and activated carbon materials
		5.4.1 Phosphorus functional groups
			5.4.1.1 Hedley’s method
			5.4.1.2 Standards, measurements, and testing protocol
			5.4.1.3 P X-ray absorption near edge structure analysis
			5.4.1.4 Phosphorus-31 nuclear magnetic resonance spectroscopy analysis
		5.4.2 Nitrogen functional groups
	5.5 Environmental application of hydrochar and activated carbon materials
		5.5.1 Water treatment
		5.5.2 Soil remediation
		5.5.3 Soil amendment agents
		5.5.4 Solid biofuels
	5.6 Economic feasibility and environmental impact of hydrochar and activated carbon materials
	5.7 Conclusions and future prospects
	Acknowledgments
	References
6 The remediation potential of biochar derived from different biomass for typical pollution in agricultural soil
	6.1 Introduction
	6.2 Remediation of soil organic pollutants by the application of biochar
		6.2.1 Sources of farmland soil organic pollutants
			6.2.1.1 Sewage irrigation
			6.2.1.2 Exhaust emissions
			6.2.1.3 Application of fertilizers and pesticides
			6.2.1.4 Solid pollution
		6.2.2 Comparison of the sorption effect of different types of biochar
		6.2.3 The mechanism of biochar removal of organic pollutions
	6.3 Remediation of heavy metal pollution by the application of biochar
		6.3.1 Soil contamination from different sources of heavy metals
			6.3.1.1 Fertilizer and pesticide
			6.3.1.2 Sewage irrigation
			6.3.1.3 Atmospheric deposition
		6.3.2 Remediation of heavy metals contamination in soil by biochar
			6.3.2.1 The influence of pH value on the remediation effect
			6.3.2.2 Influence of pore structure
			6.3.2.3 The influence of oxygen-containing functional groups on the surface of biochar
			6.3.2.4 Other influencing factors
		6.3.3 Adsorption mechanism
			6.3.3.1 Surface precipitation
			6.3.3.2 Surface coordination
			6.3.3.3 Ion exchange
			6.3.3.4 Redox
			6.3.3.5 Cation-π bond interaction
			6.3.3.6 Physical adsorption
	6.4 The impact of biochar application on greenhouse gas emission reduction in soil
		6.4.1 Factors affecting greenhouse emissions
		6.4.2 Comparison of the emission reduction effects of biochar from different feedstocks
	6.5 The effect of biochar application on soil microorganisms
		6.5.1 The effect of biochar on soil microbial biomass
		6.5.2 Comparison of community structure changes
		6.5.3 Comparison of soil enzyme activity changes
	6.6 Conclusion and future outlook
	References
7 Biochar production from lignocellulosic and nonlignocellulosic biomass using conventional and microwave heating
	7.1 Pyrolysis for biochar production
	7.2 Heating method for pyrolysis
		7.2.1 Conventional pyrolysis
		7.2.2 Microwave-assisted pyrolysis
			7.2.2.1 Operating frequency and power
			7.2.2.2 Dielectric properties of biomass
			7.2.2.3 Advances in microwave-assisted pyrolysis
	7.3 Conventional versus microwave-assisted pyrolysis
		7.3.1 Comparison between biochar properties
		7.3.2 Comparison between operating parameters
	7.4 Conclusions and future prospects
	References
8 Biochar soil application: soil improvement and pollution remediation
	8.1 Introduction
	8.2 Biochar production technologies
	8.3 Soil quality improvement
	8.4 Soil pollution remediation
	8.5 Economics of biochar production for soil enhancement
	8.6 Conclusions
	References
9 Biochar for clean composting and organic fertilizer production
	9.1 Introduction
	9.2 The role of biochar on physical properties of cleaner composting
		9.2.1 Moisture content
		9.2.2 Aeration condition
	9.3 The role of biochar on chemical properties of cleaner composting
		9.3.1 Retention of nitrogen and reduction of ammonia gas emission
		9.3.2 Reduction of greenhouse gas and prevention of odor gas
		9.3.3 Promotion of passivating heavy metals during the composting process
		9.3.4 The improvement of humification
		9.3.5 Decomposition of organic contaminants in the course of composting process
	9.4 The role of biochar on biological properties of cleaner composting
		9.4.1 Enzyme
		9.4.2 Abundance of microbial activity
	9.5 Application and prospect of biochar in organic fertilizer production
	9.6 Future prospective
	9.7 Conclusion
	References
10 Mineral-enriched biochar fertilizer for sustainable crop production and soil quality improvement
	10.1 Introduction
	10.2 Role of biochar in crop production
	10.3 Biochar organo-mineral interaction in soil
	10.4 Mineral-enriched biochar fertilizer
		10.4.1 Synthesis and characterization
		10.4.2 Physicochemical properties of biochar–mineral composite
		10.4.3 Effect on soil physicobiochemical properties
		10.4.4 Effect on crop productivity and yield
	10.5 Future perspectives
	10.6 Conclusions
	References
11 Effects of biochar on the environmental behavior of pesticides
	11.1 Introduction
	11.2 Effect of biochar on pesticide sorption
		11.2.1 Sorption mechanisms
		11.2.2 Effects of pesticides properties on adsorption
		11.2.3 Environmental parameters
	11.3 Effect of biochar on pesticide transformation
		11.3.1 Hydrolysis
		11.3.2 Catalytic oxidation
		11.3.3 Photolysis
		11.3.4 Biodegradation
	11.4 Effect of biochar on bioavailability of soil animals and plants
		11.4.1 Bioaccumulation by soil animals
		11.4.2 Bioaccumulation by plants
	11.5 Conclusions and future prospective
	References
12 Biochar nanoparticles: interactions with and impacts on soil and water microorganisms
	12.1 Introduction
	12.2 Generation of biochar nanoparticles
		12.2.1 Biochar properties
			12.2.1.1 Biomass
			12.2.1.2 Pyrolysis
			12.2.1.3 Fate and transport of BCNPs
		12.2.2 Biochar nanoparticles in the environment
			12.2.2.1 Soil amendment
			12.2.2.2 Biochar nanoparticles and contaminant interactions
				12.2.2.2.1 Pharmaceuticals
				12.2.2.2.2 Metals and metalloids
				12.2.2.2.3 Organic pollutants
	12.3 Interaction of microorganisms with BCNPs during remediation processes
		12.3.1 Surface interactions between BCNPs and microbes
		12.3.2 Influence of BCNPs on microbial carbon and nutrient cycling
		12.3.3 Toxicity of BCNPs toward microorganisms
	12.4 Conclusions
	Acknowledgment
	References
13 Functionalized biochars for the (im)mobilization of potentially toxic elements in paddy soils under dynamic redox condit...
	13.1 Introduction
	13.2 Brief description of the case study
	13.3 Impact of functionalized biochar application on the dynamics of Eh and pH
	13.4 Impact of functionalized biochar application on the mobilization of PTEs in paddy soils
		13.4.1 Arsenic mobilization as affected by biochar-induced change in various factors
			13.4.1.1 Eh and pH
			13.4.1.2 Fe–Mn oxides
			13.4.1.3 Dissolved organic carbon
			13.4.1.4 Anions
		13.4.2 Cadmium mobilization as affected by biochar-induced change in various factors
			13.4.2.1 Eh and pH
			13.4.2.2 Fe–Mn oxides
			13.4.2.3 Sulfur
		13.4.3 Lead mobilization as affected by biochar-induced change in various factors
			13.4.3.1 Eh and pH
			13.4.3.2 Fe–Mn oxides
			13.4.3.3 Phosphate
	13.5 Summary
	References
14 The role of mineral compositions in biochar stability and reactivity
	14.1 The mineral compositions in biochar derived from various feedstocks
	14.2 The stability of biochars as affected by mineral compositions
		14.2.1 The significance of biochar stability
		14.2.2 The measurement of biochar stability
		14.2.3 Biochar stability as affected by mineral compositions
	14.3 The reactivity of biochars as affected by mineral compositions
		14.3.1 The reaction between biochar and heavy metals
		14.3.2 The reaction between biochar and organic contaminants
		14.3.3 The biochar reactivity as affected by mineral compositions
	14.4 The manipulation of biochar mineral compositions
		14.4.1 Physical modification of biochar by incorporating mineral compositions
		14.4.2 Chemical modification of biochar by incorporating mineral compositions
	14.5 Perspectives
	References
15 Biochar production and modification for environmental improvement
	15.1 Biochar production
		15.1.1 Raw biomass feedstock
		15.1.2 Pyrolysis temperature
	15.2 Biochar characterization
		15.2.1 Elemental analysis
		15.2.2 Cation exchange capacity analysis
		15.2.3 Fourier-transform infrared spectroscopy
		15.2.4 Boehm titration
	15.3 Biochar activation and modification
		15.3.1 Physical activation
		15.3.2 Chemical activation
		15.3.3 Metal oxides modification
		15.3.4 Other modification methods
			15.3.4.1 Carbonaceous materials
			15.3.4.2 Microorganism
	15.4 Biochar environmental application
		15.4.1 Wastewater treatment
			15.4.1.1 Heavy metals removal
			15.4.1.2 Organic matters removal
			15.4.1.3 Nutrient removal
		15.4.2 Soil amendment
			15.4.2.1 Heavy metals removal
			15.4.2.2 Nutrient immobilization
		15.4.3 Air pollutants
			15.4.3.1 CO2 adsorption
			15.4.3.2 Flue gas treatment
	15.5 Outlook
	Acknowledgments
	References
16 The impact of biochar on nutrient supplies in agricultural ecosystems
	16.1 Introduction
	16.2 The concentrations of different nutrient elements in biochar
		16.2.1 Silicon
		16.2.2 Nitrogen
		16.2.3 Phosphorus
		16.2.4 Other nutrients
	16.3 The role of biochar application in agricultural ecosystems
	16.4 The response of nutrient mobility to biochar application
	16.5 The impact of biochar-associated Si on crop growth
	16.6 Conclusions
	Acknowledgments
	References
17 Utilization of biochar to mitigate the impacts of potentially toxic elements on sustainable agriculture
	17.1 Introduction
	17.2 Impact of potentially toxic elements on sustainable agriculture
		17.2.1 Abiotic effects
		17.2.2 Biotic effects
			17.2.2.1 Soil biota
				17.2.2.1.1 Soil macrofauna
				17.2.2.1.2 Soil microorganism
			17.2.2.2 Crop productivity and quality
	17.3 Use of biochar in remediating potentially toxic elements contaminated soil
		17.3.1 Immobilization of bioavailable potentially toxic elements
			17.3.1.1 As immobilization
			17.3.1.2 Cd and Pb immobilization
			17.3.1.3 Hg immobilization
			17.3.1.4 Cr immobilization
		17.3.2 Promotion of soil properties
			17.3.2.1 Effect of biochar on soil structure, pH, CEC, and soil organic matter
			17.3.2.2 Effect of biochar on soil biota
			17.3.2.3 Effect of biochar on crop yield and quality
	17.4 Future directions of biochar technology for better remediation efficacy and sustainable agriculture
		17.4.1 Improving remediation efficacy by biochar modification
			17.4.1.1 Chemical and physical activation
			17.4.1.2 Compositing with effective remediation materials
			17.4.1.3 Functionalizing with microbial strains
		17.4.2 Biochar application for sustainable agriculture
	17.5 Perspectives and outlook
	References
18 Biochar for remediation of alkaline soils contaminated with toxic elements
	18.1 Introduction
	18.2 Potential of biochar to (im)mobilize toxic elements in alkaline soil
	18.3 Factors affecting biochar potential for toxic elements (im)mobilization in alkaline soil
		18.3.1 Feedstock type
		18.3.2 Pyrolysis temperature
		18.3.3 Application rate
		18.3.4 The particle size of biochar
	18.4 Mechanisms for the interactions between biochar and toxic elements
	18.5 Designer/modified biochar for immobilization of toxic elements in soil
	18.6 Conclusions
	References
19 Thallium pollution in farmland soils and its potential amendment by biochar-based materials
	19.1 Introduction
	19.2 Sources of Tl pollution in farmland soils
	19.3 Thallium pollution in farmland soils
		19.3.1 Thallium contents in farmland soils
		19.3.2 Geochemical fractionations of Tl in farmland soils
	19.4 Remediation of Tl-contaminated soil by biochar amendment
	19.5 Conclusion
	Acknowledgment
	References
20 Effect of biochar on the emission of greenhouse gas in farmland
	20.1 Introduction
	20.2 Production of biochar and its carbon neutral effect
	20.3 Effect of biochar on the physical-chemical properties of farmland soil
		20.3.1 The effect of biochar on soil physical properties
		20.3.2 The effect of biochar on soil chemical properties
			20.3.2.1 The effect of biochar on soil pH
			20.3.2.2 The effect of biochar on soil cation exchange capacity
			20.3.2.3 The effect of biochar on the nutrients in the soil
	20.4 Effect of biochar on the greenhouse gas emissions in farmland process
	20.5 Effects of biochar on microbial community of farmland soil and mechanism of affecting the greenhouse gas emission in soil
	20.6 Effect of modified biochar and biochar composite on greenhouse gas emission in farmland soil
	20.7 Conclusion and perspectives
	References
21 Biochar for nutrient recovery from source-separated urine
	21.1 Introduction
	21.2 Urine as a nutrient source
	21.3 Adsorption of nutrients on biochar
		21.3.1 Application of pristine biochar
		21.3.2 Application of modified biochar
			21.3.2.1 Modification for ammonium and nitrate adsorption
			21.3.2.2 Modification for phosphate adsorption
	21.4 Nutrient-rich biochar as soil amendment
	21.5 Economical benefits of biochar application for nutrient recovery
	21.6 Concerns on the use of biochar for nutrient recovery from urine
		21.6.1 Pharmaceuticals and their metabolites
		21.6.2 Pathogens
	21.7 Challenges associated with the use of biochar for nutrient recovery from urine
	21.8 Future perspectives and considerations
	21.9 Conclusions
	References
22 Influence of biochar on soil biology in the charosphere
	22.1 Introduction
	22.2 Microbial colonization of the charosphere
	22.3 Effect of biochar on the soil microbial diversity
		22.3.1 Soil bacterial diversity
		22.3.2 Soil fungal diversity
	22.4 Effect of biochar on the soil faunal diversity
	22.5 Effect of biochar on physicochemical properties of soil
		22.5.1 Soil pH
		22.5.2 Soil aggregate stability
		22.5.3 Ion-exchange capacity
		22.5.4 Microbial biomass carbon and nitrogen
		22.5.5 Soil porosity and water holding capacity
		22.5.6 Available nutrients
	22.6 Soil biotic responses on the application of biochar amendments
		22.6.1 Impact on enzyme activity and metabolism
		22.6.2 Detoxification of toxic materials in soil
	22.7 Remarks and recommendations
	References
23 Biochar for sustainable immobilization of potentially toxic elements in contaminated farmland
	23.1 Introduction
	23.2 Immobilization of cationic potentially toxic elements and relevant mechanisms
	23.3 Immobilization of anionic potentially toxic elements and relevant mechanisms
	23.4 Limitations of biochar amendment in contaminated farmland
	23.5 Recommendations for biochar application
	23.6 Summary
	References
24 Sequential biochar systems in a circular economy
	24.1 Introduction
	24.2 Biochar systems
		24.2.1 Biochar price
		24.2.2 Sequential biochar systems
		24.2.3 Biochar applications
		24.2.4 Biochar recycling
		24.2.5 Synergies in sequential biochar systems
	24.3 Examples of sequential biochar systems
		24.3.1 Industrial biochar systems
		24.3.2 Agrarian biochar systems
		24.3.3 Industrial sequential biochar system
			24.3.3.1 Biochar production
			24.3.3.2 Wastewater treatment
			24.3.3.3 Biogas upgrading
			24.3.3.4 Additive in anaerobic digestion
			24.3.3.5 Cocomposting biochar
			24.3.3.6 Ceramic filler material
			24.3.3.7 Soil amendment
		24.3.4 Agrarian sequential biochar system
			24.3.4.1 Biochar production
			24.3.4.2 Biological water treatment: drinking water
			24.3.4.3 Water treatment: irrigation water
			24.3.4.4 Cocomposting
			24.3.4.5 Anaerobic digestion additive
			24.3.4.6 Soil application
	24.4 Outlook
	24.5 Conclusion
	Acknowledgments
	References
25 Production of biochar using sustainable microwave pyrolysis approach
	25.1 Biomass as a renewable and sustainable resource
	25.2 Microwave pyrolysis
	25.3 Advanced microwave pyrolysis technology
		25.3.1 Self-purging microwave pyrolysis
		25.3.2 Microwave vacuum pyrolysis
	25.4 Recent progress and challenges of microwave pyrolysis
	25.5 Application of biochar
		25.5.1 Adsorbent
		25.5.2 Soil amender
		25.5.3 Direct carbon fuel
		25.5.4 Activated carbon
		25.5.5 Catalyst
	25.6 Conclusion
	References
26 Biochar electrocatalysts for clean energy applications
	26.1 Introduction
	26.2 Lithium-ion batteries
	26.3 Supercapacitors
	26.4 Fuel cells
	26.5 Conclusions and future perspectives
	References
27 Engineered biochar as a potential adsorbent for carbon dioxide capture
	27.1 Introduction
	27.2 Engineered biochar production techniques
		27.2.1 Chemical modification
		27.2.2 Physical modification
		27.2.3 Impregnation with mineral oxides
	27.3 Effect of engineered biochar properties on CO2 adsorption
		27.3.1 Physical properties
		27.3.2 Chemical properties
	27.4 Challenges and future directions of engineered biochar for CO2 capture
	27.5 Conclusion
	Acknowledgment
	References
28 Biochar: A sustainable solution for the management of agri-wastes and environment
	28.1 Introduction
	28.2 Lignocellulosic biomass as sustainable feedstock source for biochar synthesis
	28.3 Application of biochar for environmental contaminant removal
		28.3.1 Removal of antibiotics
		28.3.2 Removal of dyes
		28.3.3 Removal of heavy metals and metalloids
		28.3.4 Removal of endocrine disruptors
		28.3.5 Removal of nitrogen and phosphorus pollutants
	28.4 Biochar as sustainable source of environmental management
		28.4.1 Biochar for soil amendment
		28.4.2 Influence on soil microbiota and enzyme activity
		28.4.3 Role of biochar in reducing greenhouse gas emissions and as carbon-sequestering agent
	28.5 Environmental impact and importance of biochar in bioeconomy
	28.6 Future perspectives
	28.7 Conclusion
	Acknowledgment
	References
	Further reading
29 Biochars’ potential role in the remediation, revegetation, and restoration of contaminated soils
	29.1 Introduction
	29.2 Biochar preparation, physiochemical properties, and biochar modification
		29.2.1 Biochar preparation
		29.2.2 Physiochemical properties of biochar
			29.2.2.1 Surface area and pore characteristics
			29.2.2.2 pH
			29.2.2.3 Functional groups
		29.2.3 Biochar modification
			29.2.3.1 Physical and chemical modification
			29.2.3.2 Biochar composites
	29.3 Biochar for contaminated soil remediation
		29.3.1 Biochar for heavy metals contaminated soils remediation
			29.3.1.1 Effects of influencing factors
			29.3.1.2 Mechanisms of biochar for heavy metals remediation
		29.3.2 Biochar for As contaminated soils remediation
		29.3.3 Biochar for organic pollutants contaminated soils remediation
		29.3.4 Modified biochar for contaminated soils remediation
	29.4 Biochar application for soil revegetation and restoration
		29.4.1 Biochar improve soil physical properties
		29.4.2 Biochar improve soil chemical properties
	29.5 Potential environmental risks of biochar application
	29.6 Conclusions and future prospects
	Declaration of interest statement
	References
30 Renewable energy, cleaner environments, and sustainable agriculture from pyrolysis and hydrothermal carbonization of res...
	30.1 Introduction
	30.2 Renewable energy from biochar, hydrochar, and plastic wastes
	30.3 Cleaner environments
		30.3.1 Carbonization processes for the elimination of antimicrobial resistance genes
		30.3.2 Sorption of antimicrobials to biochar
		30.3.3 Biochar and hydrochar as environmental sorbents for removing odor and pollutants in the air and water
	30.4 Sustainable agriculture
		30.4.1 Use of biochars for the reclamation of degraded soils
		30.4.2 Full-scale study in producing cotton and rice using biochar
	30.5 Summary
	References
Contents
Index




نظرات کاربران