دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2023]
نویسندگان: Shakeel Ahmed (editor)
سری:
ISBN (شابک) : 9819960495, 9789819960491
ناشر: Springer
سال نشر: 2024
تعداد صفحات: [321]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Biobased Packaging Materials: Sustainable Alternative to Conventional Packaging Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد بسته بندی زیستی: جایگزین پایدار برای مواد بسته بندی معمولی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بررسی جامع و معتبری از پیشرفتهای اخیر در مواد بستهبندی مبتنی بر زیستی همراه با مجموعهای از کاربردهای صنعتی آنها ارائه میکند. این یک رویکرد بینرشتهای ارائه میکند، ترکیبی از مهندسی مواد غذایی، علوم پلیمر، علم مواد و جنبههای پایدار مواد مبتنی بر زیست با سنتز، خواص، خصوصیات و کاربردهای آنها در مواد بستهبندی. این کتاب شامل فصولی است که مفاهیم اساسی، ساخت، خواص، خصوصیات و تعامل مواد زیستی را پوشش می دهد. همچنین موضوعات مربوط به استفاده متفاوت از مواد مبتنی بر زیست، تأثیرات زیست محیطی آنها، مقررات، جنبه های ایمنی، اقتصاد دایره ای، چالش ها و فرصت های مرتبط با مواد زیستی را مورد بحث قرار می دهد. این یک منبع ضروری برای دانشگاهیان، محققان، دانشجویان و متخصصان علاقه مند به کشف مواد بالقوه زیستی در بسته بندی مواد غذایی است.
This book provides a comprehensive and authoritative review of recent developments in bio-based packaging materials along with an array of their industrial applications. It offers an interdisciplinary approach, combining food engineering, polymer science, materials science, and sustainable aspects of bio-based materials with their synthesis, properties, characterization, and applications in packaging materials. The book encloses chapters covering fundamental concepts, manufacturing, properties, characterization, and interaction of bio-based materials. It also discusses topics related to the different usage of bio-based materials, their environmental impact, regulations, safety aspects, circular economy, challenges, and opportunities allied to bio-based materials. It is an essential resource for academicians, researchers, students, and professionals interested in exploring the potential bio-based materials in food packaging.
Foreword Preface Contents Editor and Contributors 1: Food Biopackaging for Human Benefits: Status and Perspectives 1.1 Introduction 1.1.1 Importance of Food Packaging on a Global Platform 1.2 Biodegradable Packaging 1.2.1 Edible Coating Preservation Mechanism for Food Products 1.2.2 Overview of Biodegradation of Biodegradable Films 1.2.3 The Properties of Biodegradable Films Essential for Food Biopack 1.2.3.1 Impact of Structural Properties 1.2.3.2 Contribution of Permeability Properties 1.2.3.3 Impact of Mechanical Properties 1.2.3.4 The Solubility Properties 1.2.3.5 Optical Properties 1.3 Exploration of Biobased Polymers 1.3.1 Group One: Polymers Directly Obtained from Biomass 1.3.1.1 Polysaccharides 1.3.1.2 Starch and Its Derivatives 1.3.1.3 Cellulose and Derivatives 1.3.1.4 Chitin/Chitosan 1.3.1.5 Proteins 1.3.1.6 Casein 1.3.1.7 Gluten 1.3.1.8 Soy Protein 1.3.1.9 Keratin 1.3.1.10 Collagen 1.3.1.11 Whey 1.3.1.12 Zein 1.3.2 Group 2: Contribution from Biobased Monomers and Polymers 1.3.2.1 Contribution of Polylactic Acid (PLA) 1.3.2.2 Biobased Monomers 1.4 Manufacturing of Biobased Food Packaging 1.4.1 Utilisation of Biobased Materials 1.4.2 Application of the Barrier Films 1.5 Advances in Packaging Technology 1.6 Safety and Food Contact Legislation 1.6.1 Biobased Materials and Legislation on Food Contact Materials 1.6.2 Common Legislation Requirements 1.6.3 Food Biopack Interactions 1.6.3.1 Role of Migration of Compounds 1.6.3.2 Microbiological Contamination of Biobased Food Packages 1.7 Patents 1.8 Conclusion References 2: Processing of Biobased Packaging Materials 2.1 Introduction 2.2 Overview of Biobased Materials 2.3 Biobased Materials 2.3.1 Biobased Fibers 2.3.1.1 Plants Biobased Fiber 2.3.1.2 Processing Techniques of Biobased Fibers 2.3.1.3 Properties of Biobased Fibers 2.3.2 Biofilm and Biopolymer Plastic Materials 2.3.2.1 Processing Techniques of Biofilms 2.3.2.2 Characterization Techniques for Biobased Films 2.3.2.3 Properties of Biobased Films 2.3.2.4 Advantages and Disadvantages of Biobased Films 2.3.3 Biobased Composite Materials 2.3.3.1 Fiber-Reinforced Biobased Composites Materials 2.3.3.2 Properties of Biobased Composites Materials 2.3.3.3 Advantage, Advancement, and Limitations of Biocomposites 2.4 Processing Biobased Packaging Materials 2.5 Future Scope of Biobased Packaging Materials 2.6 Conclusion References 3: Potential of PHA (Polyhydroxyalkanoates) Polymers as Packaging Materials: From Concept to Commercialization 3.1 Introduction 3.1.1 Overview on Biopolymers and Bioplastics 3.1.2 Brief Outline on Bioplastic Structure and Classification 3.1.3 PHA (Polyhydroxyalkanoates) and Its Types 3.1.4 Processing of PHA 3.2 Biowastes Utilized for the Production of Bioplastics 3.2.1 Polysaccharide-Based Bioplastics 3.2.2 Protein-Based Bioplastics 3.2.3 Protein from Plants 3.2.4 Proteins Sourced from Animals 3.3 Role of Microbes for Production of Bioplastics 3.3.1 Biosynthesis of Microbial Bioplastics 3.3.1.1 In Vitro Synthesis of Microbial Bioplastic Granules 3.3.1.2 Synthesis of Microbial Bioplastic Granule In Vivo 3.3.2 PHA and its Copolymers Produced by Microbes 3.3.3 Fermentation Strategies for PHA/PHB Production 3.3.4 Processing of PHB (Recovery and Purification) 3.4 Methods and Techniques Available for Manufacturing of Commercial Bioplastics 3.4.1 Bioplastic Manufacturing and Traditional Technologies 3.4.1.1 Moulding of Injection 3.4.1.2 Compression Moulding 3.4.1.3 Extrusion 3.4.1.4 Electrospinning 3.4.1.5 Casting Method 3.4.2 Innovative Technologies for the Production of PHA 3.4.2.1 Engineered Microorganism and PHAome 3.4.2.2 Recycling and Symbiotic Technologies 3.5 Prospects and Applications of Bioplastics 3.5.1 Medical Applications 3.5.1.1 Applications in Tissue Engineering and Regenerative Medicine 3.5.1.2 Orthopaedic 3.5.1.3 Cardiovascular 3.5.1.4 Nerve 3.5.1.5 Drug Delivery 3.5.1.6 Wound Management 3.5.1.7 Medical Devices 3.5.1.8 Conjugation of Drugs 3.5.1.9 Adhesion and Proliferation of Cells 3.5.1.10 Tissue Engineering 3.5.2 Agricultural and Horticultural Applications 3.5.2.1 Supplemental Water Supply Using Bioplastic Matrices 3.5.2.2 Bioplastic Matrices as Devices for the Controlled Release of Fertilizers 3.5.2.3 Analyses of Plants 3.5.2.4 Agro-textile Applications 3.5.2.5 Mulching Film Applications 3.5.3 In Bioremediation 3.5.3.1 In Situ Bioremediation 3.5.3.2 Ex Situ Bioremediation 3.5.4 Automobile Application 3.5.5 In 3D Bioprinting 3.5.5.1 Myocardial Bioprinting 3.5.5.2 Knee Joint Articular Cartilage 3.5.5.3 Bone Health and Regeneration 3.5.5.4 Human Neuroblastoma 3.5.5.5 Cancer Tumour 3.5.5.6 Grafting of Fat 3.5.6 The 4D Bioprinting 3.5.7 Food Packaging Applications 3.5.7.1 PLA and PHAs-Based Active Packaging Materials 3.5.7.2 Cellulose Products in the Active Food Packaging Materials 3.5.7.3 Active Food Packaging Containing TPS 3.5.7.4 Synthetic Biodegradable Plastics for Food Packaging 3.5.7.5 Food Packaging Materials from Poly(caprolactone) 3.5.7.6 PVA-Based Food Packaging Materials 3.5.7.7 PBAT-Based Food Packaging Materials 3.6 Non-degradable Bioplastic Polymers in Active Food Packaging 3.6.1 Bio-Poly-(ethylene Terephthalate) (Bio-PET) 3.6.2 Bio-polyamides (Bio-PA) 3.6.3 Bio-poly-(trimethylene Terephthalate) (Bio-PTT) 3.7 Conclusion References 4: Applications of Cellulose in Biobased Food Packaging Systems 4.1 Introduction 4.2 Biobased Materials 4.3 Biobased Polymers 4.3.1 Cellulose 4.3.1.1 Derivatives of Cellulose 4.3.1.1.1 Cellulose Acetate (CA) 4.3.1.1.2 Cellulose Sulfate (CS) 4.3.1.1.3 Carboxymethyl Cellulose (CMC) 4.3.1.1.4 Ethyl Cellulose (EC) 4.3.1.1.5 Methyl Cellulose (MC) 4.3.1.1.6 Regenerated Cellulose (RC) 4.4 Biobased (Cellulose) Nanomaterials in Food Packaging 4.4.1 Nanocellulose (NC) 4.4.1.1 Cellulose Nanocrystals (CNCs) 4.4.1.2 Cellulose Nanofibrils (CNFs) 4.4.1.3 Bacterial Nanocellulose (BNC) 4.5 Conclusion References 5: Starch for Packaging Materials 5.1 Introduction 5.2 Starch: An Eco-friendly Packaging Material 5.2.1 Starch Sources 5.2.2 Properties of Biodegradable Starch Films Used in Food Packaging 5.2.2.1 Structural Properties 5.2.2.2 Solubility Properties 5.2.2.3 Mechanical Characteristics 5.2.2.4 Optical Properties 5.2.2.5 Permeability Properties 5.2.3 Starch Production and Processing 5.2.4 Starch Extraction 5.2.5 Reviews on the Previously Used Starch-Based Biodegradable Material 5.2.6 Use of Nanomaterials Based on Starch 5.3 Analyzing the Foods´ Shelf Life 5.3.1 Shelf Life Evaluation and Design Types 5.4 Films that Biodegrade for Use in Food Packaging Made of Starch: Issues and Challenges 5.5 Conclusions References 6: Chitin and Chitosan for Packaging Materials 6.1 Introduction 6.2 The Impact of Chitosan Incorporation on the Film Properties 6.3 Blends of Biopolymers, Including Chitosan 6.4 Chitosan Film Characterization Using Nanofillers 6.5 Chitosan based Films with Active Compounds Preparation 6.6 Chitosan-Based Films as Systems for Packaging Material 6.7 Conclusion References 7: Natural Antioxidants from Fruit By-products for Active Packaging Applications 7.1 Introduction 7.2 Antioxidants from Fruit By-products 7.2.1 Sources 7.2.1.1 Type of Natural Antioxidants 7.2.1.1.1 Vitamins 7.2.1.1.2 Flavonoids 7.2.1.1.3 Carotenoids 7.2.1.1.4 Phenolic Acids 7.2.1.2 Antioxidant Activity Determination 7.2.1.2.1 Hydrogen Transfer (HAT) Methods 7.2.1.2.2 Single Electron Transfer (SET) Methods 7.3 Applications in Active Packaging 7.3.1 Direct Application of Antioxidants 7.3.2 Incorporation in Polymer Films or Coatings 7.3.3 Incorporation via Other Methods 7.4 Future Prospects and Challenges 7.5 Conclusion References 8: Bionanocomposites for Packaging Materials 8.1 Introduction 8.2 Bio-Based Packaging Technologies 8.2.1 Polylactic Acid (PLA) 8.2.2 Polyethylene Furanoate (PEF) 8.2.3 Polybutylene Succinate (PBS) 8.3 Functional and Smart Food Packaging 8.4 Antibacterial and Antifungal Bionanocomposites for Packaging 8.5 Final Considerations References 9: Environmental Impact of Biobased Materials 9.1 Introduction 9.1.1 Biobased Materials for Food Packaging Applications 9.1.1.1 Polyhydroxyalkanoates (PHAs) 9.1.1.2 Polylactic Acid (PLA) 9.1.1.3 Starch 9.1.1.4 Chitosan 9.2 Conclusion References 10: Safety and Associated Legislation of Selected Food Contact Bio-Based Packaging 10.1 Introduction 10.1.1 Food Packaging Applications and Utilisation 10.1.2 Potential Sustainable Packaging Material 10.1.3 Applications of Bio-based Polymers Food in Packaging 10.1.4 Physicochemical Properties 10.1.5 About Migration of Particles 10.1.6 Regulatory Aspects 10.1.6.1 United Kingdom (UK) 10.1.6.2 United State of America (USA) 10.1.6.3 Other Countries 10.1.7 Additional Information Regarding the Scope of the Chapter 10.2 Properties of Cellulose 10.2.1 Types of Cellulose and Cellulose Nanocrystal 10.2.1.1 Cellulose Nanocrystal 10.2.1.2 Cellulose Nanofibril Properties 10.2.1.3 Nanocellulose 10.2.2 Toxicological Assessment of Cellulose, Cellulose Derivatives and Nanocellulose Polymer 10.2.3 Other Peoples´ Perspectives 10.2.4 Other Scholars´ Thoughts 10.2.4.1 Microcrystalline Cellulose 10.2.4.2 Cellulose Derivatives 10.2.4.3 Nanocellulose 10.2.5 Legislation and Regulatory Framework 10.2.6 Conclusions on the risk and Challenges Related of Nanocellulose 10.3 Properties of Chitosan 10.3.1 Other Thoughts on Chitosan at the Micro-scale 10.3.2 Scholar´s Perspective on the Safety and Toxicity of Chitosan 10.3.3 Regulatory Framework Related to Chitosan 10.3.3.1 In Europe 10.3.3.2 USA 10.3.3.3 Relevant Regulations of Chitosan in Other Countries 10.3.4 Chitosan Nanoparticles (NPs) 10.3.4.1 Assimilation of Results on Chitosan Nanoparticles 10.3.4.2 Safety and Regulations of Chitosan Nanoparticles 10.3.4.3 Regulations and Legislation 10.4 Conclusion and Future Aspects References 11: Life Cycle Analysis of Biobased Material 11.1 Introduction 11.2 Biobased Products 11.3 Biobased Materials 11.3.1 Bioplastics 11.3.2 Cellulose 11.3.3 Biobased Composites 11.3.4 Bioadhesives 11.3.5 Volatile Fatty Acids 11.3.6 Biosolvents 11.3.7 Succinic Acid 11.3.8 Biobased Chemical 11.3.9 Biogas 11.3.10 Biodiesel 11.4 Carbon Sequestration in Biobased Products 11.4.1 ADEME´s Biobased Materials Technique 11.4.2 The European Commission´s Lead Market Initiative 11.4.3 GHG Protocol Ambition 11.4.4 ISO 14067 11.4.5 The ILCD Handbook 11.4.6 PAS 2050 11.4.7 Material Carbon Footprint 11.4.8 Biogenic Carbon Storage 11.5 Life Cycle Assessment 11.5.1 History of LCA 11.6 Life Cycle Valuation of Biobased Materials 11.7 Peripheral Environmental Consequence 11.8 Temporary Carbon Storage Protocol 11.9 Final Waste Management 11.10 Land Usage 11.10.1 Efficiency and Changes in Land Usage 11.10.2 Standing Biomass 11.10.3 Early Impact Evaluation Techniques 11.10.3.1 Water Usage 11.10.3.2 Soil Degradation 11.10.3.3 Biodiversity 11.11 Allocation 11.12 LCA Application of Biobased Materials 11.12.1 Animal Feed Production 11.12.2 Feedstock Distribution and Transportation 11.12.3 Processing and Conversion of Feedstock 11.12.4 Product Distribution and Transportation 11.12.5 Product´s Purpose and Future 11.13 Challenges in LCA Application 11.14 Conclusions and Outlook 11.15 Future Perspective References