ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biobased Packaging Materials: Sustainable Alternative to Conventional Packaging Materials

دانلود کتاب مواد بسته بندی زیستی: جایگزین پایدار برای مواد بسته بندی معمولی

Biobased Packaging Materials: Sustainable Alternative to Conventional Packaging Materials

مشخصات کتاب

Biobased Packaging Materials: Sustainable Alternative to Conventional Packaging Materials

ویرایش: [1st ed. 2023] 
نویسندگان:   
سری:  
ISBN (شابک) : 9819960495, 9789819960491 
ناشر: Springer 
سال نشر: 2024 
تعداد صفحات: [321] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 Mb 

قیمت کتاب (تومان) : 55,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Biobased Packaging Materials: Sustainable Alternative to Conventional Packaging Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد بسته بندی زیستی: جایگزین پایدار برای مواد بسته بندی معمولی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد بسته بندی زیستی: جایگزین پایدار برای مواد بسته بندی معمولی

این کتاب بررسی جامع و معتبری از پیشرفت‌های اخیر در مواد بسته‌بندی مبتنی بر زیستی همراه با مجموعه‌ای از کاربردهای صنعتی آنها ارائه می‌کند. این یک رویکرد بین‌رشته‌ای ارائه می‌کند، ترکیبی از مهندسی مواد غذایی، علوم پلیمر، علم مواد و جنبه‌های پایدار مواد مبتنی بر زیست با سنتز، خواص، خصوصیات و کاربردهای آنها در مواد بسته‌بندی. این کتاب شامل فصولی است که مفاهیم اساسی، ساخت، خواص، خصوصیات و تعامل مواد زیستی را پوشش می دهد. همچنین موضوعات مربوط به استفاده متفاوت از مواد مبتنی بر زیست، تأثیرات زیست محیطی آنها، مقررات، جنبه های ایمنی، اقتصاد دایره ای، چالش ها و فرصت های مرتبط با مواد زیستی را مورد بحث قرار می دهد. این یک منبع ضروری برای دانشگاهیان، محققان، دانشجویان و متخصصان علاقه مند به کشف مواد بالقوه زیستی در بسته بندی مواد غذایی است.


توضیحاتی درمورد کتاب به خارجی

This book provides a comprehensive and authoritative review of recent developments in bio-based packaging materials along with an array of their industrial applications. It offers an interdisciplinary approach, combining food engineering, polymer science, materials science, and sustainable aspects of bio-based materials with their synthesis, properties, characterization, and applications in packaging materials. The book encloses chapters covering fundamental concepts, manufacturing, properties, characterization, and interaction of bio-based materials. It also discusses topics related to the different usage of bio-based materials, their environmental impact, regulations, safety aspects, circular economy, challenges, and opportunities allied to bio-based materials. It is an essential resource for academicians, researchers, students, and professionals interested in exploring the potential bio-based materials in food packaging.



فهرست مطالب

Foreword
Preface
Contents
Editor and Contributors
1: Food Biopackaging for Human Benefits: Status and Perspectives
	1.1 Introduction
		1.1.1 Importance of Food Packaging on a Global Platform
	1.2 Biodegradable Packaging
		1.2.1 Edible Coating Preservation Mechanism for Food Products
		1.2.2 Overview of Biodegradation of Biodegradable Films
		1.2.3 The Properties of Biodegradable Films Essential for Food Biopack
			1.2.3.1 Impact of Structural Properties
			1.2.3.2 Contribution of Permeability Properties
			1.2.3.3 Impact of Mechanical Properties
			1.2.3.4 The Solubility Properties
			1.2.3.5 Optical Properties
	1.3 Exploration of Biobased Polymers
		1.3.1 Group One: Polymers Directly Obtained from Biomass
			1.3.1.1 Polysaccharides
			1.3.1.2 Starch and Its Derivatives
			1.3.1.3 Cellulose and Derivatives
			1.3.1.4 Chitin/Chitosan
			1.3.1.5 Proteins
			1.3.1.6 Casein
			1.3.1.7 Gluten
			1.3.1.8 Soy Protein
			1.3.1.9 Keratin
			1.3.1.10 Collagen
			1.3.1.11 Whey
			1.3.1.12 Zein
		1.3.2 Group 2: Contribution from Biobased Monomers and Polymers
			1.3.2.1 Contribution of Polylactic Acid (PLA)
			1.3.2.2 Biobased Monomers
	1.4 Manufacturing of Biobased Food Packaging
		1.4.1 Utilisation of Biobased Materials
		1.4.2 Application of the Barrier Films
	1.5 Advances in Packaging Technology
	1.6 Safety and Food Contact Legislation
		1.6.1 Biobased Materials and Legislation on Food Contact Materials
		1.6.2 Common Legislation Requirements
		1.6.3 Food Biopack Interactions
			1.6.3.1 Role of Migration of Compounds
			1.6.3.2 Microbiological Contamination of Biobased Food Packages
	1.7 Patents
	1.8 Conclusion
	References
2: Processing of Biobased Packaging Materials
	2.1 Introduction
	2.2 Overview of Biobased Materials
	2.3 Biobased Materials
		2.3.1 Biobased Fibers
			2.3.1.1 Plants Biobased Fiber
			2.3.1.2 Processing Techniques of Biobased Fibers
			2.3.1.3 Properties of Biobased Fibers
		2.3.2 Biofilm and Biopolymer Plastic Materials
			2.3.2.1 Processing Techniques of Biofilms
			2.3.2.2 Characterization Techniques for Biobased Films
			2.3.2.3 Properties of Biobased Films
			2.3.2.4 Advantages and Disadvantages of Biobased Films
		2.3.3 Biobased Composite Materials
			2.3.3.1 Fiber-Reinforced Biobased Composites Materials
			2.3.3.2 Properties of Biobased Composites Materials
			2.3.3.3 Advantage, Advancement, and Limitations of Biocomposites
	2.4 Processing Biobased Packaging Materials
	2.5 Future Scope of Biobased Packaging Materials
	2.6 Conclusion
	References
3: Potential of PHA (Polyhydroxyalkanoates) Polymers as Packaging Materials: From Concept to Commercialization
	3.1 Introduction
		3.1.1 Overview on Biopolymers and Bioplastics
		3.1.2 Brief Outline on Bioplastic Structure and Classification
		3.1.3 PHA (Polyhydroxyalkanoates) and Its Types
		3.1.4 Processing of PHA
	3.2 Biowastes Utilized for the Production of Bioplastics
		3.2.1 Polysaccharide-Based Bioplastics
		3.2.2 Protein-Based Bioplastics
		3.2.3 Protein from Plants
		3.2.4 Proteins Sourced from Animals
	3.3 Role of Microbes for Production of Bioplastics
		3.3.1 Biosynthesis of Microbial Bioplastics
			3.3.1.1 In Vitro Synthesis of Microbial Bioplastic Granules
			3.3.1.2 Synthesis of Microbial Bioplastic Granule In Vivo
		3.3.2 PHA and its Copolymers Produced by Microbes
		3.3.3 Fermentation Strategies for PHA/PHB Production
		3.3.4 Processing of PHB (Recovery and Purification)
	3.4 Methods and Techniques Available for Manufacturing of Commercial Bioplastics
		3.4.1 Bioplastic Manufacturing and Traditional Technologies
			3.4.1.1 Moulding of Injection
			3.4.1.2 Compression Moulding
			3.4.1.3 Extrusion
			3.4.1.4 Electrospinning
			3.4.1.5 Casting Method
		3.4.2 Innovative Technologies for the Production of PHA
			3.4.2.1 Engineered Microorganism and PHAome
			3.4.2.2 Recycling and Symbiotic Technologies
	3.5 Prospects and Applications of Bioplastics
		3.5.1 Medical Applications
			3.5.1.1 Applications in Tissue Engineering and Regenerative Medicine
			3.5.1.2 Orthopaedic
			3.5.1.3 Cardiovascular
			3.5.1.4 Nerve
			3.5.1.5 Drug Delivery
			3.5.1.6 Wound Management
			3.5.1.7 Medical Devices
			3.5.1.8 Conjugation of Drugs
			3.5.1.9 Adhesion and Proliferation of Cells
			3.5.1.10 Tissue Engineering
		3.5.2 Agricultural and Horticultural Applications
			3.5.2.1 Supplemental Water Supply Using Bioplastic Matrices
			3.5.2.2 Bioplastic Matrices as Devices for the Controlled Release of Fertilizers
			3.5.2.3 Analyses of Plants
			3.5.2.4 Agro-textile Applications
			3.5.2.5 Mulching Film Applications
		3.5.3 In Bioremediation
			3.5.3.1 In Situ Bioremediation
			3.5.3.2 Ex Situ Bioremediation
		3.5.4 Automobile Application
		3.5.5 In 3D Bioprinting
			3.5.5.1 Myocardial Bioprinting
			3.5.5.2 Knee Joint Articular Cartilage
			3.5.5.3 Bone Health and Regeneration
			3.5.5.4 Human Neuroblastoma
			3.5.5.5 Cancer Tumour
			3.5.5.6 Grafting of Fat
		3.5.6 The 4D Bioprinting
		3.5.7 Food Packaging Applications
			3.5.7.1 PLA and PHAs-Based Active Packaging Materials
			3.5.7.2 Cellulose Products in the Active Food Packaging Materials
			3.5.7.3 Active Food Packaging Containing TPS
			3.5.7.4 Synthetic Biodegradable Plastics for Food Packaging
			3.5.7.5 Food Packaging Materials from Poly(caprolactone)
			3.5.7.6 PVA-Based Food Packaging Materials
			3.5.7.7 PBAT-Based Food Packaging Materials
	3.6 Non-degradable Bioplastic Polymers in Active Food Packaging
		3.6.1 Bio-Poly-(ethylene Terephthalate) (Bio-PET)
		3.6.2 Bio-polyamides (Bio-PA)
		3.6.3 Bio-poly-(trimethylene Terephthalate) (Bio-PTT)
	3.7 Conclusion
	References
4: Applications of Cellulose in Biobased Food Packaging Systems
	4.1 Introduction
	4.2 Biobased Materials
	4.3 Biobased Polymers
		4.3.1 Cellulose
			4.3.1.1 Derivatives of Cellulose
				4.3.1.1.1 Cellulose Acetate (CA)
				4.3.1.1.2 Cellulose Sulfate (CS)
				4.3.1.1.3 Carboxymethyl Cellulose (CMC)
				4.3.1.1.4 Ethyl Cellulose (EC)
				4.3.1.1.5 Methyl Cellulose (MC)
				4.3.1.1.6 Regenerated Cellulose (RC)
	4.4 Biobased (Cellulose) Nanomaterials in Food Packaging
		4.4.1 Nanocellulose (NC)
			4.4.1.1 Cellulose Nanocrystals (CNCs)
			4.4.1.2 Cellulose Nanofibrils (CNFs)
			4.4.1.3 Bacterial Nanocellulose (BNC)
	4.5 Conclusion
	References
5: Starch for Packaging Materials
	5.1 Introduction
	5.2 Starch: An Eco-friendly Packaging Material
		5.2.1 Starch Sources
		5.2.2 Properties of Biodegradable Starch Films Used in Food Packaging
			5.2.2.1 Structural Properties
			5.2.2.2 Solubility Properties
			5.2.2.3 Mechanical Characteristics
			5.2.2.4 Optical Properties
			5.2.2.5 Permeability Properties
		5.2.3 Starch Production and Processing
		5.2.4 Starch Extraction
		5.2.5 Reviews on the Previously Used Starch-Based Biodegradable Material
		5.2.6 Use of Nanomaterials Based on Starch
	5.3 Analyzing the Foods´ Shelf Life
		5.3.1 Shelf Life Evaluation and Design Types
	5.4 Films that Biodegrade for Use in Food Packaging Made of Starch: Issues and Challenges
	5.5 Conclusions
	References
6: Chitin and Chitosan for Packaging Materials
	6.1 Introduction
	6.2 The Impact of Chitosan Incorporation on the Film Properties
	6.3 Blends of Biopolymers, Including Chitosan
	6.4 Chitosan Film Characterization Using Nanofillers
	6.5 Chitosan based Films with Active Compounds Preparation
	6.6 Chitosan-Based Films as Systems for Packaging Material
	6.7 Conclusion
	References
7: Natural Antioxidants from Fruit By-products for Active Packaging Applications
	7.1 Introduction
	7.2 Antioxidants from Fruit By-products
		7.2.1 Sources
			7.2.1.1 Type of Natural Antioxidants
				7.2.1.1.1 Vitamins
				7.2.1.1.2 Flavonoids
				7.2.1.1.3 Carotenoids
				7.2.1.1.4 Phenolic Acids
			7.2.1.2 Antioxidant Activity Determination
				7.2.1.2.1 Hydrogen Transfer (HAT) Methods
				7.2.1.2.2 Single Electron Transfer (SET) Methods
	7.3 Applications in Active Packaging
		7.3.1 Direct Application of Antioxidants
		7.3.2 Incorporation in Polymer Films or Coatings
		7.3.3 Incorporation via Other Methods
	7.4 Future Prospects and Challenges
	7.5 Conclusion
	References
8: Bionanocomposites for Packaging Materials
	8.1 Introduction
	8.2 Bio-Based Packaging Technologies
		8.2.1 Polylactic Acid (PLA)
		8.2.2 Polyethylene Furanoate (PEF)
		8.2.3 Polybutylene Succinate (PBS)
	8.3 Functional and Smart Food Packaging
	8.4 Antibacterial and Antifungal Bionanocomposites for Packaging
	8.5 Final Considerations
	References
9: Environmental Impact of Biobased Materials
	9.1 Introduction
		9.1.1 Biobased Materials for Food Packaging Applications
			9.1.1.1 Polyhydroxyalkanoates (PHAs)
			9.1.1.2 Polylactic Acid (PLA)
			9.1.1.3 Starch
			9.1.1.4 Chitosan
	9.2 Conclusion
	References
10: Safety and Associated Legislation of Selected Food Contact Bio-Based Packaging
	10.1 Introduction
		10.1.1 Food Packaging Applications and Utilisation
		10.1.2 Potential Sustainable Packaging Material
		10.1.3 Applications of Bio-based Polymers Food in Packaging
		10.1.4 Physicochemical Properties
		10.1.5 About Migration of Particles
		10.1.6 Regulatory Aspects
			10.1.6.1 United Kingdom (UK)
			10.1.6.2 United State of America (USA)
			10.1.6.3 Other Countries
		10.1.7 Additional Information Regarding the Scope of the Chapter
	10.2 Properties of Cellulose
		10.2.1 Types of Cellulose and Cellulose Nanocrystal
			10.2.1.1 Cellulose Nanocrystal
			10.2.1.2 Cellulose Nanofibril Properties
			10.2.1.3 Nanocellulose
		10.2.2 Toxicological Assessment of Cellulose, Cellulose Derivatives and Nanocellulose Polymer
		10.2.3 Other Peoples´ Perspectives
		10.2.4 Other Scholars´ Thoughts
			10.2.4.1 Microcrystalline Cellulose
			10.2.4.2 Cellulose Derivatives
			10.2.4.3 Nanocellulose
		10.2.5 Legislation and Regulatory Framework
		10.2.6 Conclusions on the risk and Challenges Related of Nanocellulose
	10.3 Properties of Chitosan
		10.3.1 Other Thoughts on Chitosan at the Micro-scale
		10.3.2 Scholar´s Perspective on the Safety and Toxicity of Chitosan
		10.3.3 Regulatory Framework Related to Chitosan
			10.3.3.1 In Europe
			10.3.3.2 USA
			10.3.3.3 Relevant Regulations of Chitosan in Other Countries
		10.3.4 Chitosan Nanoparticles (NPs)
			10.3.4.1 Assimilation of Results on Chitosan Nanoparticles
			10.3.4.2 Safety and Regulations of Chitosan Nanoparticles
			10.3.4.3 Regulations and Legislation
	10.4 Conclusion and Future Aspects
	References
11: Life Cycle Analysis of Biobased Material
	11.1 Introduction
	11.2 Biobased Products
	11.3 Biobased Materials
		11.3.1 Bioplastics
		11.3.2 Cellulose
		11.3.3 Biobased Composites
		11.3.4 Bioadhesives
		11.3.5 Volatile Fatty Acids
		11.3.6 Biosolvents
		11.3.7 Succinic Acid
		11.3.8 Biobased Chemical
		11.3.9 Biogas
		11.3.10 Biodiesel
	11.4 Carbon Sequestration in Biobased Products
		11.4.1 ADEME´s Biobased Materials Technique
		11.4.2 The European Commission´s Lead Market Initiative
		11.4.3 GHG Protocol Ambition
		11.4.4 ISO 14067
		11.4.5 The ILCD Handbook
		11.4.6 PAS 2050
		11.4.7 Material Carbon Footprint
		11.4.8 Biogenic Carbon Storage
	11.5 Life Cycle Assessment
		11.5.1 History of LCA
	11.6 Life Cycle Valuation of Biobased Materials
	11.7 Peripheral Environmental Consequence
	11.8 Temporary Carbon Storage Protocol
	11.9 Final Waste Management
	11.10 Land Usage
		11.10.1 Efficiency and Changes in Land Usage
		11.10.2 Standing Biomass
		11.10.3 Early Impact Evaluation Techniques
			11.10.3.1 Water Usage
			11.10.3.2 Soil Degradation
			11.10.3.3 Biodiversity
	11.11 Allocation
	11.12 LCA Application of Biobased Materials
		11.12.1 Animal Feed Production
		11.12.2 Feedstock Distribution and Transportation
		11.12.3 Processing and Conversion of Feedstock
		11.12.4 Product Distribution and Transportation
		11.12.5 Product´s Purpose and Future
	11.13 Challenges in LCA Application
	11.14 Conclusions and Outlook
	11.15 Future Perspective
	References




نظرات کاربران