دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Donat Hader (editor). Gilmar Erzinger (editor)
سری:
ISBN (شابک) : 012811861X, 9780128118610
ناشر: Elsevier
سال نشر: 2017
تعداد صفحات: 457
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Bioassays: Advanced Methods and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زیست سنجی: روش ها و کاربردهای پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
زیست سنجی: روشها و کاربردهای پیشرفته درک کاملی از کاربردهای سنجش زیستی در پایش سمیت در اکوسیستمهای آبی فراهم میکند. جدیدترین آزمایشها و کاربردها در کشف ترکیبات و سموم در محیط را بررسی میکند و همه موجودات مناسب از باکتریها گرفته تا میکروارگانیسمها و گیاهان عالی از جمله بیمهرگان و مهرهداران را پوشش میدهد. با یادگیری آزمایشهای جدیدتر، آزمایش کنترل آلودگی آب میتواند زمان و کار کمتر و هزینه کمتری داشته باشد. این کتاب برای هر کسی که در محیطهای آبی کار میکند یا کسانی که نیاز به مقدمهای بر اکوتوکسیکولوژی یا سنجشهای زیستی دارند، از محققین گرفته تا تکنسینها و دانشجویان، مفید خواهد بود.
Bioassays: Advanced Methods and Applications provides a thorough understanding of the applications of bioassays in monitoring toxicity in aquatic ecosystems. It reviews the newest tests and applications in discovering compounds and toxins in the environment, covering all suitable organisms, from bacteria, to microorganisms, to higher plants, including invertebrates and vertebrates. By learning about newer tests, water pollution control testing can be less time and labor consuming, and less expensive. This book will be helpful for anyone working in aquatic environments or those who need an introduction to ecotoxicology or bioassays, from investigators, to technicians and students.
Cover Bioassays: Advanced Methods and Applications Copyright List of Contributors Preface 1 Introduction 1.1 Freshwater ecosystems 1.2 Marine waters 1.3 Terrestrial ecosystems 1.4 Air 1.5 Need for bioassays References 2 Chemical analysis of air and water Part I Water analysis 2.1 Overview 2.2 Physical and chemical characteristics 2.2.1 Odor, color 2.2.2 pH 2.2.3 Turbidity 2.2.4 Biochemical oxygen demand (BOD) 2.2.5 Chemical oxygen demand (COD) 2.3 Metals in water bodies 2.3.1 Spectrometric methods 2.3.2 Ion chromatography 2.3.3 Anions in water 2.3.4 Chloride 2.3.5 Fluoride 2.3.6 Cyanide 2.3.7 Sulfate 2.3.8 Nitrate 2.3.9 Phosphate 2.4 Organic pollutants in water 2.4.1 Pesticides 2.4.2 Nitrogen-containing compounds (carbamate, triazine and urea based pesticides) 2.4.3 Nitrosamines 2.4.4 Oil and grease 2.4.5 Emerging pollutants Part II Air analysis 2.5 Review 2.6 Air sampling 2.7 Analysis of air pollutants 2.7.1 Sulfur compounds 2.7.2 Nitrogen compounds 2.7.3 Carbon compounds 2.7.4 Halogens and their compounds 2.7.5 Radioactive substances 2.7.6 Particles References 3 Historical development of bioassays 3.1 Introduction 3.2 Bioassays for environmental toxicity 3.3 Bioassays for human physiology and toxicity References Further Reading 4 Regulations, political and societal aspects, toxicity limits 4.1 Introduction 4.2 Regulations 4.2.1 Europe 4.2.2 United States of America 4.2.3 Brazil 4.2.4 China 4.2.5 Japan 4.3 Political and societal aspects 4.4 Toxicity limits References 5 Image analysis for bioassays – the basics 5.1 Introduction 5.2 Hardware 5.3 Image manipulation 5.3.1 Pixel manipulation 5.3.2 Mathematical filters 5.3.3 Look-up tables 5.4 Object detection by segmentation 5.5 Organism tracking 5.6 Oriented movement 5.7 Pattern recognition References 6 Growing algal biomass using wastes 6.1 Introduction 6.2 Biofiltration assays and biomass productivity in aquaculture grown in effluents 6.2.1 Fishpond effluents. Integrated multitrophic aquaculture 6.2.2 Pig farm effluents 6.2.3 Sewage and leachate 6.3 Biochemical assays in the analysis of harvested biomass 6.3.1 Biostimulant assays 6.3.2 Functional feed and food from algae 6.3.2.1 Functional feed for fish Substitution of fishmeal for algae meal Techniques used for evaluation of fish feed Hematology and other metabolic analysis Respiratory burst activity 6.3.2.2 Functional food for human Polysaccharides of algae with immunodulatory activity Techniques used to assess immunological activity Determination of cytokines 6.3.3 Cosmetics 6.3.3.1 DPPH assay 6.3.3.2 ABTS assay 6.3.3.3 Superoxide radical scavenging activity 6.3.3.4 Hydrogen peroxide scavenging assay 6.3.3.5 β-carotene bleaching method (BBM) 6.3.4 Biofuel 6.4 Biorefinery and integration of the production and biochemistry processes References 7 Toxicity testing using the marine macroalga Ulva pertusa: method development and application 7.1 Introduction 7.2 Development and application of the Ulva pertusa reproduction bioassay 7.3 Applying the Ulva reproduction test for toxicity identification evaluation (TIE) 7.4 Inter-laboratory comparison test 7.5 ISO protocol of the Ulva test 7.6 The Ulva kit 7.7 The UlvaTox 7.7.1 Principle of operation 7.8 Conclusions References 8 Pigments 8.1 Introduction 8.2 Effects of pollutants on photosynthetic pigments in flagellated algae 8.3 Delayed fluorescence as a versatile tool for measurement of photosynthetic performance 8.3.1 Delayed fluorescence – the phenomenon 8.3.2 Possible DF applications 8.3.3 Delayed fluorescence in ecotoxicology 8.3.4 Recording of recovery of desiccated plants 8.3.5 Determination of efficiency of accessory pigments 8.4 Conclusions References 9 Photosynthesis assessed by chlorophyll fluorescence 9.1 Introduction 9.2 Principle of fluorescence measurements 9.3 Method of fluorescence measurements 9.4 Fluorescence quenching parameters 9.5 Instrumentation for fluorescence measurements 9.6 Saturation pulse method or how to measure quantum yield properly 9.7 Description of instrumentation 9.7.1 Submersible fluorometers for algal research 9.7.2 Land-based fluorometers 9.7.3 Simultaneous measurement of PS II and PSI using a Dual PAM References 10 Ecotox 10.1 Introduction 10.2 Euglena gracilis - model organism for Ecotox 10.3 Hardware of Ecotox 10.4 Endpoint parameters 10.4.1 Motility 10.4.2 Velocity 10.4.3 Cell compactness 10.4.4 Upward swimming % 10.4.5 R-value 10.4.6 Alignment 10.5 Operational modes of Ecotox 10.5.1 Control mode 10.5.2 Single toxin mode 10.5.3 Online mode 10.6 Data recording, storage and analysis 10.7 Manual version of Ecotox 10.8 Applications for Ecotox 10.9 New Ecotox 10.9.1 Hardware 10.9.2 Software for image analysis and hardware control 10.10 Suitability and advantages of Ecotox References 11 Daphniatox 11.1 Introduction 11.2 Culture conditions 11.3 Bioassays using Daphnia 11.4 Daphniatox 11.4.1 Hardware 11.4.2 Software for image analysis in the Daphniatox bioassay instrument 11.5 Application of the Daphniatox instrument 11.5.1 Typical results obtained with Daphniatox 11.5.2 Suitability of Daphniatox for monitoring environmental pollution References 12 Bioluminescence systems in environmental biosensors 12.1 Introduction 12.2 Historical aspects 12.3 Metabolism of microbial luminescence 12.4 The phenomenon of quorum sensing 12.5 Autoinducers in Gram-negative bacteria 12.6 Effect of inhibitors on bioluminescence emission of V. fischeri 12.7 Commercial tests with V. fischeri 12.8 Methods for bioluminescence measurements 12.9 Genetically modified microorganisms 12.10 Bioluminescent dinoflagellates serve as bioassay to indicate mechanical stress 12.11 Conclusions References 13 Image processing for bioassays 13.1 Introduction 13.2 Sensor-equipped phenotyping platforms 13.3 Sensors for noninvasive plant measurements 13.3.1 RGB cameras 13.3.2 Infrared cameras 13.3.3 Near-infrared cameras 13.3.4 Fluorescence recording cameras 13.3.5 Hyperspectral cameras 13.3.6 Laser scanners 13.4 Environmental sensors 13.5 Software for sensor data capture and analysis 13.5.1 Image processing for shoot phenotypes 13.5.2 Image processing for root phenotypes 13.6 Applications in phenotyping and ecotoxicology 13.6.1 Ecotoxicology 13.6.2 Phenotyping in plant science 13.6.3 Plant phenotyping in crop research 13.6.4 Field phenotyping 13.7 Conclusions and outlook References 14 Express detection of water pollutants by photoelectric recording from algal cell suspensions 14.1 Introduction 14.2 Channelrhodopsin-mediated photosensory transduction in green flagellate algae 14.3 Principles of photoelectric measurements in cell suspensions 14.4 Detection of heavy metal ions in water 14.5 Detection of organic pollutants in water 14.6 Comparison with ECOTOX 14.7 Conclusions References 15 Fish 15.1 Introduction 15.2 Acute fish toxicity testing 15.3 Replacement of the fish bioassay by the fish cell line test 15.4 “Real time” fish monitors for wastewater effluents, at river sites and fish monitors for protecting of drinking water ... 15.5 Static, semi-static and dynamic fish bioassays 15.6 Fish biomarker bioassays 15.7 Bioassays and fish reproduction: fertilization, embryo-larvae, early life stage, lifescycle (“reciprocal” bioassays) 15.7.1 “Reciprocal fish bioassay” with running ripe contaminated fish, fertilization, egg incubation and influence of solar... 15.7.1.1 Permeability of the fish-eggs and multixenobiotic resistance-mediating transport (MXRtr) 15.7.1.2 Eco-genotoxicity: influence of solar ultraviolet-B on pelagic fish embryos: DNA fragmentation and thymine dimers References 16 Bioassays for solar UV radiation 16.1 Introduction 16.2 Criteria for reliable biological UV dosimeters 16.3 The DLR biofilm dosimeter 16.4 Other biological monitoring systems 16.5 Monitoring of environmental UV radiation 16.6 Applications in space References 17 A comparison of commonly used and commercially available bioassays for aquatic ecosystems 17.1 Introduction 17.2 An overview of commonly used commercial bioassays 17.3 Comparison of common bioassays 17.3.1 Sensitivity 17.3.2 Response time 17.3.3 Costs References 18 Ecotoxicological monitoring of wastewater 18.1 Introduction 18.2 Water treatment plants 18.3 Measurement of toxicity in water treatment plants 18.4 Monitoring of industrial wastewaters 18.5 Comparison of bioassays 18.6 Conclusions and outlook References 19 Marine toxicology: assays and perspectives for developing countries 19.1 Introduction 19.2 Artemia sp. toxicity tests 19.3 Mysidopsis juniae toxicity tests 19.4 Perna perna toxicity test 19.5 Conclusions References 20 Applications for the real environment 20.1 From the bioassay in the laboratory to the field situation 20.1.1 Bridging the lab-field gap 20.1.2 The on site “WaBoLu Aquatox” monitoring system 20.2 Real time bioassays for online monitoring in the environment 20.3 Application of the Early-Life-Stage Test (ELST) for in situ testing on, a research vessel 20.4 Applications of bioassays in an extreme environment 20.5 Bioassays and mesocosms: artificial streams and ponds References 21 Environmental monitoring using bioassays 21.1 Introduction 21.2 Bioassay tests 21.3 ECOTOX 21.4 Short-term vs long-term tests 21.5 ECOTOX measurements in Egyptian lakes 21.6 Conclusions References Index Back Cover