دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: سری: ISBN (شابک) : 9783527339198, 3527339191 ناشر: Wiley-VCH سال نشر: 2016 تعداد صفحات: 1136 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 157 مگابایت
در صورت تبدیل فایل کتاب Bioanalytics Analytical Methods and Concepts in Biochemistry and Molecular Biology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش ها و مفاهیم تحلیلی تجزیه و تحلیل زیستی در بیوشیمی و زیست مولکولی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
روشهای تحلیلی ابزارهای ضروری علوم زیستی مدرن هستند. این کتاب مقدمهای جامع بر این روشهای تحلیلی، از جمله پیشزمینههای فیزیکی و شیمیایی آنها، و همچنین بحث در مورد نقاط قوت و ضعف هر روش ارائه میکند. تمام تکنیک های اصلی برای تعیین و تجزیه و تحلیل تجربی ماکرومولکول های بیولوژیکی، از جمله پروتئین ها، کربوهیدرات ها، لیپیدها و اسیدهای نوکلئیک را پوشش می دهد. این ارائه شامل ارجاعات متقابل مکرر به منظور برجسته کردن بسیاری از ارتباطات بین تکنیک های مختلف است. این کتاب یک دید پرنده از کل موضوع ارائه می دهد و خواننده را قادر می سازد تا مناسب ترین روش را برای هر چالش زیست تحلیلی معین انتخاب کند. این موضوع کتاب را به منبعی مفید برای دانشجویان و محققین در راه اندازی و ارزیابی تحقیقات تجربی تبدیل می کند. عمق تجزیه و تحلیل و ماهیت جامع پوشش به این معنی است که مقدار زیادی از مطالب جدید، حتی برای تجربیان باتجربه نیز وجود دارد. تکنیکهای زیر به تفصیل پوشش داده شدهاند: - خالصسازی و تعیین پروتئینها - اندازهگیری فعالیت آنزیمی - میکروکالریمتری - ایمونواسی، کروماتوگرافی میل ترکیبی و سایر روشهای ایمنی - پیوند متقابل، برش و اصلاح شیمیایی پروتئینها - میکروسکوپ نوری، میکروسکوپ الکترونی و نیروی اتمی میکروسکوپ - تکنیکهای کروماتوگرافی و الکتروفورتیک - آنالیز توالی و ترکیب پروتئین - روشهای طیفسنجی جرمی - اندازهگیری برهمکنشهای پروتئین-پروتئین - حسگرهای زیستی - NMR و EPR مولکولهای زیستی - میکروسکوپ الکترونی و آنالیز ساختار اشعه ایکس - آنالیز کربوهیدراتها و لیپیدها - آنالیز اصلاح پس از ترانس جداسازی و تعیین اسیدهای نوکلئیک - تکنیکهای هیبریداسیون DNA - تکنیکهای واکنش زنجیرهای پلیمراز - آنالیز توالی و ترکیب پروتئین - آنالیز توالی DNA و آنالیز اصلاح اپی ژنتیک - تجزیه و تحلیل برهمکنشهای پروتئین و اسید نوکلئیک - تجزیه و تحلیل دادههای توالی - پروتئومیکس، متابولومیکس، پپتیدومیکس و توپونومیکس زیست شناسی شیمیایی
Analytical methods are the essential enabling tools of the modern biosciences. This book presents a comprehensive introduction into these analytical methods, including their physical and chemical backgrounds, as well as a discussion of the strengths and weakness of each method. It covers all major techniques for the determination and experimental analysis of biological macromolecules, including proteins, carbohydrates, lipids and nucleic acids. The presentation includes frequent cross-references in order to highlight the many connections between different techniques. The book provides a bird's eye view of the entire subject and enables the reader to select the most appropriate method for any given bioanalytical challenge. This makes the book a handy resource for students and researchers in setting up and evaluating experimental research. The depth of the analysis and the comprehensive nature of the coverage mean that there is also a great deal of new material, even for experienced experimentalists. The following techniques are covered in detail: - Purification and determination of proteins - Measuring enzymatic activity - Microcalorimetry - Immunoassays, affinity chromatography and other immunological methods - Cross-linking, cleavage, and chemical modification of proteins - Light microscopy, electron microscopy and atomic force microscopy - Chromatographic and electrophoretic techniques - Protein sequence and composition analysis - Mass spectrometry methods - Measuring protein-protein interactions - Biosensors - NMR and EPR of biomolecules - Electron microscopy and X-ray structure analysis - Carbohydrate and lipid analysis - Analysis of posttranslational modifications - Isolation and determination of nucleic acids - DNA hybridization techniques - Polymerase chain reaction techniques - Protein sequence and composition analysis - DNA sequence and epigenetic modification analysis - Analysis of protein-nucleic acid interactions - Analysis of sequence data - Proteomics, metabolomics, peptidomics and toponomics - Chemical biology
Bioanalytics: Analytical Methods and Concepts in Biochemistry and Molecular Biology Table of Contents Preface Introduction: Bioanalytics - a Science in its Own Right Part I: Protein Analytics Chapter 1: Protein Purification 1.1 Properties of Proteins 1.2 Protein Localization and Purification Strategy 1.3 Homogenization and Cell Disruption 1.4 Precipitation 1.5 Centrifugation 1.5.1 Basic Principles 1.5.2 Centrifugation Techniques 1.6 Removal of Salts and Hydrophilic Contaminants 1.7 Concentration 1.8 Detergents and their Removal 1.8.1 Properties of Detergents 1.8.2 Removal of Detergents 1.9 Sample Preparation for Proteome Analysis Further Reading Chapter 2: Protein determination 2.1 Quantitative Determination by Staining Tests 2.1.1 Biuret Assay 2.1.2 Lowry Assay 2.1.3 Bicinchoninic Acid Assay (BCA Assay) 2.1.4 Bradford Assay 2.2 Spectroscopic Methods 2.2.1 Measurements in the UV Range 2.2.2 Fluorescence Method 2.3 Radioactive Labeling of Peptides and Proteins 2.3.1 Iodinations Further Reading Chapter 3: Enzyme Activity Testing 3.1 The Driving Force behind Chemical Reactions 3.2 Rate of Chemical Reactions 3.3 Catalysts 3.4 Enzymes as Catalysts 3.5 Rate of Enzyme-Controlled Reactions 3.6 Michaelis-Menten Theory 3.7 Determination of Km and Vmax 3.8 Inhibitors 3.8.1 Competitive Inhibitors 3.8.2 Non-competitive Inhibitors 3.9 Test System Set-up 3.9.1 Analysis of the Physiological Function 3.9.2 Selecting the Substrates 3.9.3 Detection System 3.9.4 Time Dependence 3.9.5 pH Value 3.9.6 Selecting the Buffer Substance and the Ionic Strength 3.9.7 Temperature 3.9.8 Substrate Concentration 3.9.9 Controls Further Reading Chapter 4: Microcalorimetry 4.1 Differential Scanning Calorimetry (DSC) 4.2 Isothermal Titration Calorimetry (ITC) 4.2.1 Ligand Binding to Proteins 4.2.2 Binding of Molecules to Membranes: Insertion and Peripheral Binding 4.3 Pressure Perturbation Calorimetry (PPC) Further Reading Chapter 5: Immunological Techniques 5.1 Antibodies 5.1.1 Antibodies and Immune Defense 5.1.2 Antibodies as Reagents 5.1.3 Properties of Antibodies 5.1.4 Functional Structure of IgG 5.1.5 Antigen Interaction at the Combining Site 5.1.6 Handling of Antibodies 5.2 Antigens 5.3 Antigen-Antibody Reaction 5.3.1 Immunoagglutination 5.3.2 Immunoprecipitation 5.3.3 Immune Binding 5.4 Complement Fixation 5.5 Methods in Cellular Immunology 5.6 Alteration of Biological Functions 5.7 Production of Antibodies 5.7.1 Types of Antibodies 5.7.2 New Antibody Techniques (Antibody Engineering) 5.7.3 Optimized Monoclonal Antibody Constructs with Effector Functions for Therapeutic Application 5.8 Outlook: Future Expansion of the Binding Concepts Dedication Further Reading Chapter 6: Chemical Modification of Proteins and Protein Complexes 6.1 Chemical Modification of Protein Functional Groups 6.2 Modification as a Means to Introduce Reporter Groups 6.2.1 Investigation with Naturally Occurring Proteins 6.2.2 Investigation of Recombinant and Mutated Proteins 6.3 Protein Crosslinking for the Analysis of Protein Interaction 6.3.1 Bifunctional Reagents 6.3.2 Photoaffinity Labeling Further Reading Chapter 7: Spectroscopy 7.1 Physical Principles and Measuring Techniques 7.1.1 Physical Principles of Optical Spectroscopic Techniques 7.1.2 Interaction of Light with Matter 7.1.3 Absorption Measurement and the Lambert-Beer Law 7.1.4 Photometer 7.1.5 Time-Resolved Spectroscopy 7.2 UV/VIS/NIR Spectroscopy 7.2.1 Basic Principles 7.2.2 Chromoproteins 7.3 Fluorescence Spectroscopy 7.3.1 Basic Principles of Fluorescence Spectroscopy 7.3.2 Fluorescence: Emission and Action Spectra 7.3.3 Fluorescence Studies using Intrinsic and Extrinsic Probes 7.3.4 Green Fluorescent Protein (GFP) as a Unique Fluorescent Probe 7.3.5 Quantum Dots as Fluorescence Labels 7.3.6 Special Fluorescence Techniques: FRAP, FLIM, FCS, TIRF 7.3.7 Förster Resonance Energy Transfer (FRET) 7.3.8 Frequent Mistakes in Fluorescence Spectroscopy: ``The Seven Sins of Fluorescence Measurements´´ 7.4 Infrared Spectroscopy 7.4.1 Basic Principles of IR Spectroscopy 7.4.2 Molecular Vibrations 7.4.3 Technical aspects of Infrared Spectroscopy 7.4.4 Infrared Spectra of Proteins 7.5 Raman Spectroscopy 7.5.1 Basic Principles of Raman Spectroscopy 7.5.2 Raman Experiments 7.5.3 Resonance Raman Spectroscopy 7.6 Single Molecule Spectroscopy 7.7 Methods using Polarized Light 7.7.1 Linear Dichroism 7.7.2 Optical Rotation Dispersion and Circular Dichroism Further Reading Chapter 8: Light Microscopy Techniques - Imaging 8.1 Steps on the Road to Microscopy - from Simple Lenses to High Resolution Microscopes 8.2 Modern Applications 8.3 Basic Physical Principles 8.4 Detection Methods 8.5 Sample Preparation 8.6 Special Fluorescence Microscopic Analysis Further Reading Chapter 9: Cleavage of Proteins 9.1 Proteolytic Enzymes 9.2 Strategy 9.3 Denaturation of Proteins 9.4 Cleavage of Disulfide Bonds and Alkylation 9.5 Enzymatic Fragmentation 9.5.1 Proteases 9.5.2 Conditions for Proteolysis 9.6 Chemical Fragmentation 9.7 Summary Further Reading Chapter 10: Chromatographic Separation Methods 10.1 Instrumentation 10.2 Fundamental Terms and Concepts in Chromatography 10.3 Biophysical Properties of Peptides and Proteins 10.4 Chromatographic Separation Modes for Peptides and Proteins 10.4.1 High-Performance Size Exclusion Chromatography 10.4.2 High-Performance Reversed-Phase Chromatography (HP-RPC) 10.4.3 High-Performance Normal-Phase Chromatography (HP-NPC) 10.4.4 High-Performance Hydrophilic Interaction Chromatography (HP-HILIC) 10.4.5 High-Performance Aqueous Normal Phase Chromatography (HP-ANPC) 10.4.6 High-Performance Hydrophobic Interaction Chromatography (HP-HIC) 10.4.7 High-Performance Ion Exchange Chromatography (HP-IEX) 10.4.8 High-Performance Affinity Chromatography (HP-AC) 10.5 Method Development from Analytical to Preparative Scale Illustrated for HP-RPC 10.5.1 Development of an Analytical Method 10.5.2 Scaling up to Preparative Chromatography 10.5.3 Fractionation 10.5.4 Analysis of Fractionations 10.6 Multidimensional HPLC 10.6.1 Purification of Peptides and Proteins by MD-HPLC Methods 10.6.2 Fractionation of Complex Peptide and Protein Mixtures by MD-HPLC 10.6.3 Strategies for MD-HPLC Methods 10.6.4 Design of an Effective MD-HPLC Scheme 10.7 Final Remarks Further Reading Chapter 11: Electrophoretic Techniques 11.1 Historical Review 11.2 Theoretical Fundamentals 11.3 Equipment and Procedures of Gel Electrophoreses 11.3.1 Sample Preparation 11.3.2 Gel Media for Electrophoresis 11.3.3 Detection and Quantification of the Separated Proteins 11.3.4 Zone Electrophoresis 11.3.5 Porosity Gradient Gels 11.3.6 Buffer Systems 11.3.7 Disc Electrophoresis 11.3.8 Acidic Native Electrophoresis 11.3.9 SDS Polyacrylamide Gel Electrophoresis 11.3.10 Cationic Detergent Electrophoresis 11.3.11 Blue Native Polyacrylamide Gel Electrophoresis 11.3.12 Isoelectric Focusing 11.4 Preparative Techniques 11.4.1 Electroelution from Gels 11.4.2 Preparative Zone Electrophoresis 11.4.3 Preparative Isoelectric Focusing 11.5 Free Flow Electrophoresis 11.6 High-Resolution Two-Dimensional Electrophoresis 11.6.1 Sample Preparation 11.6.2 Prefractionation 11.6.3 First Dimension: IEF in IPG Strips 11.6.4 Second Dimension: SDS Polyacrylamide Gel Electrophoresis 11.6.5 Detection and Identification of Proteins 11.6.6 Difference Gel Electrophoresis (DIGE) 11.7 Electroblotting 11.7.1 Blot Systems 11.7.2 Transfer Buffers 11.7.3 Blot Membranes Further Reading Chapter 12: Capillary Electrophoresis 12.1 Historical Overview 12.2 Capillary Electrophoresis Setup 12.3 Basic Principles of Capillary Electrophoresis 12.3.1 Sample Injection 12.3.2 The Engine: Electroosmotic Flow (EOF) 12.3.3 Joule Heating 12.3.4 Detection Methods 12.4 Capillary Electrophoresis Methods 12.4.1 Capillary Zone Electrophoresis (CZE) 12.4.2 Affinity Capillary Electrophoresis (ACE) 12.4.3 Micellar Electrokinetic Chromatography (MEKC) 12.4.4 Capillary Electrochromatography (CEC) 12.4.5 Chiral Separations 12.4.6 Capillary Gel Electrophoresis (CGE) 12.4.7 Capillary Isoelectric Focusing (CIEF) 12.4.8 Isotachophoresis (ITP) 12.5 Special Techniques 12.5.1 Sample Concentration 12.5.2 Online Sample Concentration 12.5.3 Fractionation 12.5.4 Microchip Electrophoresis 12.6 Outlook Further Reading Chapter 13: Amino Acid Analysis 13.1 Sample Preparation 13.1.1 Acidic Hydrolysis 13.1.2 Alkaline Hydrolysis 13.1.3 Enzymatic Hydrolysis 13.2 Free Amino Acids 13.3 Liquid Chromatography with Optical Detection Systems 13.3.1 Post-Column Derivatization 13.3.2 Pre-column Derivatization 13.4 Amino Acid Analysis using Mass Spectrometry 13.5 Summary Further Reading Chapter 14: Protein Sequence Analysis 14.1 N-Terminal Sequence Analysis: The Edman Degradation 14.1.1 Reactions of the Edman Degradation 14.1.2 Identification of the Amino Acids 14.1.3 Quality of Edman Degradation: the Repetitive Yield 14.1.4 Instrumentation 14.1.5 Problems of Amino Acid Sequence Analysis 14.1.6 State of the Art 14.2 C-Terminal Sequence Analysis 14.2.1 Chemical Degradation Methods 14.2.2 Peptide Quantities and Quality of the Chemical Degradation 14.2.3 Degradation of Polypeptides with Carboxypeptidases Further Reading Chapter 15: Mass Spectrometry 15.1 Ionization Methods 15.1.1 Matrix Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) 15.1.2 Electrospray Ionization (ESI) 15.2 Mass Analyzer 15.2.1 Time-of-Flight Analyzers (TOF) 15.2.2 Quadrupole Analyzer 15.2.3 Electric Ion Traps 15.2.4 Magnetic Ion Trap 15.2.5 Orbital Ion Trap 15.2.6 Hybrid Instruments 15.3 Ion Detectors 15.3.1 Secondary Electron Multiplier (SEV) 15.3.2 Faraday Cup 15.4 Fragmentation Techniques 15.4.1 Collision Induced Dissociation (CID) 15.4.2 Prompt and Metastable Decay (ISD, PSD) 15.4.3 Photon-Induced Dissociation (PID, IRMPD) 15.4.4 Generation of Free Radicals (ECD, HECD, ETD) 15.5 Mass Determination 15.5.1 Calculation of Mass 15.5.2 Influence of Isotopy 15.5.3 Calibration 15.5.4 Determination of the Number of Charges 15.5.5 Signal Processing and Analysis 15.5.6 Derivation of the Mass 15.5.7 Problems 15.6 Identification, Detection, and Structure Elucidation 15.6.1 Identification 15.6.2 Verification 15.6.3 Structure Elucidation 15.7 LC-MS and LC-MS/MS 15.7.1 LC-MS 15.7.2 LC-MS/MS 15.7.3 Ion Mobility Spectrometry (IMS) 15.8 Quantification Further Reading Chapter 16: Protein-Protein Interactions 16.1 The Two-Hybrid System 16.1.1 Principle of Two-Hybrid Systems 16.1.2 Elements of the Two-Hybrid System 16.1.3 Construction of Bait and Prey Proteins 16.1.4 Which Bait Proteins can be used in a Y2H Screen? 16.1.5 AD Fusion Proteins and cDNA Libraries 16.1.6 Carrying out a Y2H Screen 16.1.7 Other Modifications and Extensions of the Two-Hybrid-Technology 16.1.8 Biochemical and Functional Analysis of Interactions 16.2 TAP-Tagging and Purification of Protein Complexes 16.3 Analyzing Interactions In Vitro: GST-Pulldown 16.4 Co-immunoprecipitation 16.5 Far-Western 16.6 Surface Plasmon Resonance Spectroscopy 16.7 Fluorescence Resonance Energy Transfer (FRET) 16.7.1 Introduction 16.7.2 Key Physical Principles of FRET 16.7.3 Methods of FRET Measurements 16.7.4 Fluorescent Probes for FRET 16.7.5 Alternative Tools for Probing Protein-Protein Interactions: LINC and STET 16.8 Analytical Ultracentrifugation 16.8.1 Principles of Instrumentation 16.8.2 Basics of Centrifugation 16.8.3 Sedimentation Velocity Experiments 16.8.4 Sedimentation-Diffusion Equilibrium Experiments Further Reading Chapter 17: Biosensors 17.1 Dry Chemistry: Test Strips for Detecting and Monitoring Diabetes 17.2 Biosensors 17.2.1 Concept of Biosensors 17.2.2 Construction and Function of Biosensors 17.2.3 Cell Sensors 17.2.4 Immunosensors 17.3 Biomimetic Sensors 17.4 From Glucose Enzyme Electrodes to Electronic DNA Biochips 17.5 Resume: Biosensor or not Biosensor is no Longer the Question Further Reading Part II: 3D Structure Determination Chapter 18. Magnetic Resonance Spectroscopy of Biomolecules 18.1 NMR Spectroscopy of Biomolecules 18.1.1 Theory of NMR Spectroscopy 18.1.2 One-Dimensional NMR Spectroscopy 18.1.3 Two-Dimensional NMR Spectroscopy 18.1.4 Three-Dimensional NMR Spectroscopy 18.1.5 Resonance Assignment 18.1.6 Protein Structure Determination 18.1.7 Protein Structures and more - an Overview 18.2 EPR Spectroscopy of Biological Systems 18.2.1 Basics of EPR Spectroscopy 18.2.2 cw- EPR Spectroscopy 18.2.3 g-Value 18.2.4 Electron Spin Nuclear Spin Coupling (Hyperfine Coupling) 18.2.5 g and Hyperfine Anisotropy 18.2.6 Electron Spin-Electron Spin Coupling 18.2.7 Pulsed EPR Experiments 18.2.8 Further Examples of EPR Applications 18.2.9 General Remarks on the Significance of EPR Spectra 18.2.10 Comparison EPR/NMR Acknowledgements Further Reading Chapter 19: Electron Microscopy 19.1 Transmission Electron Microscopy - Instrumentation 19.2 Approaches to Preparation 19.2.1 Native Samples in Ice 19.2.2 Negative Staining 19.2.3 Metal Coating by Evaporation 19.2.4 Labeling of Proteins 19.3 Imaging Process in the Electron Microscope 19.3.1 Resolution of a Transmission Electron Microscope 19.3.2 Interactions of the Electron Beam with the Object 19.3.3 Phase Contrast in Transmission Electron Microscopy 19.3.4 Electron Microscopy with a Phase Plate 19.3.5 Imaging Procedure for Frozen-Hydrated Specimens 19.3.6 Recording Images - Cameras and the Impact of Electrons 19.4 Image Analysis and Processing of Electron Micrographs 19.4.1 Pixel Size 19.4.2 Fourier Transformation 19.4.3 Analysis of the Contrast Transfer Function and Object Features 19.4.4 Improving the Signal-to-Noise Ratio 19.4.5 Principal Component Analysis and Classification 19.5 Three-Dimensional Electron Microscopy 19.5.1 Three-Dimensional Reconstruction of Single Particles 19.5.2 Three-Dimensional Reconstruction of Regularly Arrayed Macromolecular Complexes 19.5.3 Electron Tomography of Individual Objects 19.6 Analysis of Complex 3D Data Sets 19.6.1 Hybrid Approach: Combination of EM and X-Ray Data 19.6.2 Segmenting Tomograms and Visualization 19.6.3 Identifying Protein Complexes in Cellular Tomograms 19.7 Perspectives of Electron Microscopy Further Reading Chapter 20: Atomic Force Microscopy 20.1 Introduction 20.2 Principle of the Atomic Force Microscope 20.3 Interaction between Tip and Sample 20.4 Preparation Procedures 20.5 Mapping Biological Macromolecules 20.6 Force Spectroscopy of Single Molecules 20.7 Detection of Functional States and Interactions of Individual Proteins Further Reading Chapter 21: X-Ray Structure Analysis 21.1 X-Ray Crystallography 21.1.1 Crystallization 21.1.2 Crystals and X-Ray Diffraction 21.1.3 The Phase Problem 21.1.4 Model Building and Structure Refinement 21.2 Small Angle X-Ray Scattering (SAXS) 21.2.1 Machine Setup 21.2.2 Theory 21.2.3 Data Analysis 21.3 X-Ray Free Electron LASER (XFEL) 21.3.1 Machine Setup and Theory Acknowledgement Further Reading Part III: Peptides, Carbohydrates, and Lipids Chapter 22: Analytics of Synthetic Peptides 22.1 Concept of Peptide Synthesis 22.2 Purity of Synthetic Peptides 22.3 Characterization and Identity of Synthetic Peptides 22.4 Characterization of the Structure of Synthetic Peptides 22.5 Analytics of Peptide Libraries Further Reading Chapter 23: Carbohydrate Analysis 23.1 General Stereochemical Basics 23.1.1 The Series of d-Sugars 23.1.2 Stereochemistry of d-Glucose 23.1.3 Important Monosaccharide Building Blocks 23.1.4 The Series of l-Sugars 23.1.5 The Glycosidic Bond 23.2 Protein Glycosylation 23.2.1 Structure of the N-Glycans 23.2.2 Structure of the O-Glycans 23.3 Analysis of Protein Glycosylation 23.3.1 Analysis on the Basis of the Intact Glycoprotein 23.3.2 Mass Spectrometric Analysis on the Basis of Glycopeptides 23.3.3 Release and Isolation of the N-Glycan Pool 23.3.4 Analysis of Individual N-Glycans 23.4 Genome, Proteome, Glycome 23.5 Final Considerations Further Reading Chapter 24: Lipid Analysis 24.1 Structure and Classification of Lipids 24.2 Extraction of Lipids from Biological Sources 24.2.1 Liquid Phase Extraction 24.2.2 Solid Phase Extraction 24.3 Methods for Lipid Analysis 24.3.1 Chromatographic Methods 24.3.2 Mass Spectrometry 24.3.3 Immunoassays 24.3.4 Further Methods in Lipid Analysis 24.3.5 Combining Different Analytical Systems 24.4 Analysis of Selected Lipid Classes 24.4.1 Whole Lipid Extracts 24.4.2 Fatty Acids 24.4.3 Nonpolar Neutral Lipids 24.4.4 Polar Ester Lipids 24.4.5 Lipid Hormones and Intracellular Signaling Molecules 24.5 Lipid Vitamins 24.6 Lipidome Analysis 24.7 Perspectives Further Reading Chapter 25: Analysis of Post-translational Modifications: Phosphorylation and Acetylation of Proteins 25.1 Functional Relevance of Phosphorylation and Acetylation 25.1.1 Phosphorylation 25.1.2 Acetylation 25.2 Strategies for the Analysis of Phosphorylated and Acetylated Proteins and Peptides 25.3 Separation and Enrichment of Phosphorylated and Acetylated Proteins and Peptides 25.4 Detection of Phosphorylated and Acetylated Proteins and Peptides 25.4.1 Detection by Enzymatic, Radioactive, Immunochemical, and Fluorescence Based Methods 25.4.2 Detection of Phosphorylated and Acetylated Proteins by Mass Spectrometry 25.5 Localization and Identification of Post-translationally Modified Amino Acids 25.5.1 Localization of Phosphorylated and Acetylated Amino Acids by Edman Degradation 25.5.2 Localization of Phosphorylated and Acetylated Amino Acids by Tandem Mass Spectrometry 25.6 Quantitative Analysis of Post-translational Modifications 25.7 Future of Post-translational Modification Analysis Further Reading Part IV: Nucleic Acid Analytics Chapter 26. Isolation and Purification of Nucleic Acids 26.1 Purification and Determination of Nucleic Acid Concentration 26.1.1 Phenolic Purification of Nucleic Acids 26.1.2 Gel Filtration 26.1.3 Precipitation of Nucleic Acids with Ethanol 26.1.4 Determination of the Nucleic Acid Concentration 26.2 Isolation of Genomic DNA 26.3 Isolation of Low Molecular Weight DNA 26.3.1 Isolation of Plasmid DNA from Bacteria 26.3.2 Isolation of Eukaryotic Low Molecular Weight DNA 26.4 Isolation of Viral DNA 26.4.1 Isolation of Phage DNA 26.4.2 Isolation of Eukaryotic Viral DNA 26.5 Isolation of Single-Stranded DNA 26.5.1 Isolation of M13 Phage DNA 26.5.2 Separation of Single- and Double-Stranded DNA 26.6 Isolation of RNA 26.6.1 Isolation of Cytoplasmic RNA 26.6.2 Isolation of Poly(A) RNA 26.6.3 Isolation of Small RNA 26.7 Isolation of Nucleic Acids using Magnetic Particles 26.8 Lab-on-a-chip Further Reading Chapter 27: Analysis of Nucleic Acids 27.1 Restriction Analysis 27.1.1 Principle of Restriction Analyses 27.1.2 Historical Overview 27.1.3 Restriction Enzymes 27.1.4 In Vitro Restriction and Applications 27.2 Electrophoresis 27.2.1 Gel Electrophoresis of DNA 27.2.2 Gel Electrophoresis of RNA 27.2.3 Pulsed-Field Gel Electrophoresis (PFGE) 27.2.4 Two-Dimensional Gel Electrophoresis 27.2.5 Capillary Gel Electrophoresis 27.3 Staining Methods 27.3.1 Fluorescent Dyes 27.3.2 Silver Staining 27.4 Nucleic Acid Blotting 27.4.1 Nucleic Acid Blotting Methods 27.4.2 Choice of Membrane 27.4.3 Southern Blotting 27.4.4 Northern Blotting 27.4.5 Dot- and Slot-Blotting 27.4.6 Colony and Plaque Hybridization 27.5 Isolation of Nucleic Acid Fragments 27.5.1 Purification using Glass Beads 27.5.2 Purification using Gel Filtration or Reversed Phase 27.5.3 Purification using Electroelution 27.5.4 Other Methods 27.6 LC-MS of Oligonucleotides 27.6.1 Principles of the Synthesis of Oligonucleotides 27.6.2 Investigation of the Purity and Characterization of Oligonucleotides 27.6.3 Mass Spectrometric Investigation of Oligonucleotides 27.6.4 IP-RP-HPLC-MS Investigation of a Phosphorothioate Oligonucleotide Further Reading Chapter 28: Techniques for the Hybridization and Detection of Nucleic Acids 28.1 Basic Principles of Hybridization 28.1.1 Principle and Practice of Hybridization 28.1.2 Specificity of the Hybridization and Stringency 28.1.3 Hybridization Methods 28.2 Probes for Nucleic Acid Analysis 28.2.1 DNA Probes 28.2.2 RNA Probes 28.2.3 PNA Probes 28.2.4 LNA Probes 28.3 Methods of Labeling 28.3.1 Labeling Positions 28.3.2 Enzymatic Labeling 28.3.3 Photochemical Labeling Reactions 28.3.4 Chemical Labeling 28.4 Detection Systems 28.4.1 Staining Methods 28.4.2 Radioactive Systems 28.4.3 Non-radioactive Systems 28.5 Amplification Systems 28.5.1 Target Amplification 28.5.2 Target-Specific Signal Amplification 28.5.3 Signal Amplification Further Reading Chapter 29: Polymerase Chain Reaction 29.1 Possibilities of PCR 29.2 Basics 29.2.1 Instruments 29.2.2 Amplification of DNA 29.2.3 Amplification of RNA (RT-PCR) 29.2.4 Optimizing the Reaction 29.2.5 Quantitative PCR 29.3 Special PCR Techniques 29.3.1 Nested PCR 29.3.2 Asymmetric PCR 29.3.3 Use of Degenerate Primers 29.3.4 Multiplex PCR 29.3.5 Cycle sequencing 29.3.6 In Vitro Mutagenesis 29.3.7 Homogeneous PCR Detection Procedures 29.3.8 Quantitative Amplification Procedures 29.3.9 In Situ PCR 29.3.10 Other Approaches 29.4 Contamination Problems 29.4.1 Avoiding Contamination 29.4.2 Decontamination 29.5 Applications 29.5.1 Detection of Infectious Diseases 29.5.2 Detection of Genetic Defects 29.5.3 The Human Genome Project 29.6 Alternative Amplification Procedures 29.6.1 Nucleic Acid Sequence-Based Amplification (NASBA) 29.6.2 Strand Displacement Amplification (SDA) 29.6.3 Helicase-Dependent Amplification (HDA) 29.6.4 Ligase Chain Reaction (LCR) 29.6.5 Qβ Amplification 29.6.6 Branched DNA Amplification (bDNA) 29.7 Prospects Further Reading Chapter 30: DNA Sequencing 30.1 Gel-Supported DNA Sequencing Methods 30.1.1 Sequencing according to Sanger: The Dideoxy Method 30.1.2 Labeling Techniques and Methods of Verification 30.1.3 Chemical Cleavage according to Maxam and Gilbert 30.2 Gel-Free DNA Sequencing Methods - The Next Generation 30.2.1 Sequencing by Synthesis 30.2.2 Single Molecule Sequencing Further Reading Chapter 31: Analysis of Epigenetic Modifications 31.1 Overview of the Methods to Detect DNA-Modifications 31.2 Methylation Analysis with the Bisulfite Method 31.2.1 Amplification and Sequencing of Bisulfite-Treated DNA 31.2.2 Restriction Analysis after Bisulfite PCR 31.2.3 Methylation Specific PCR 31.3 DNA Analysis with Methylation Specific Restriction Enzymes 31.4 Methylation Analysis by Methylcytosine-Binding Proteins 31.5 Methylation Analysis by Methylcytosine-Specific Antibodies 31.6 Methylation Analysis by DNA Hydrolysis and Nearest Neighbor-Assays 31.7 Analysis of Epigenetic Modifications of Chromatin 31.8 Chromosome Interaction Analyses 31.9 Outlook Further Reading Chapter 32: Protein-Nucleic Acid Interactions 32.1 DNA-Protein Interactions 32.1.1 Basic Features for DNA-Protein Recognition: Double-Helical Structures 32.1.2 DNA Curvature 32.1.3 DNA Topology 32.2 DNA-Binding Motifs 32.3 Special Analytical Methods 32.3.1 Filter Binding 32.3.2 Gel Electrophoresis 32.3.3 Determination of Dissociation Constants 32.3.4 Analysis of DNA-Protein Complex Dynamics 32.4 DNA Footprint Analysis 32.4.1 DNA Labeling 32.4.2 Primer Extension Reaction for DNA Analysis 32.4.3 Hydrolysis Methods 32.4.4 Chemical Reagents for the Modification of DNA-Protein Complexes 32.4.5 Interference Conditions 32.4.6 Chemical Nucleases 32.4.7 Genome-Wide DNA-Protein Interactions 32.5 Physical Analysis Methods 32.5.1 Fluorescence Methods 32.5.2 Fluorophores and Labeling Procedures 32.5.3 Fluorescence Resonance Energy Transfer (FRET) 32.5.4 Molecular Beacons 32.5.5 Surface Plasmon Resonance (SPR) 32.5.6 Scanning Force Microscopy (SFM) 32.5.7 Optical Tweezers 32.5.8 Fluorescence Correlation Spectroscopy (FCS) 32.6 RNA-Protein Interactions 32.6.1 Functional Diversity of RNA 32.6.2 RNA Secondary Structure Parameters and unusual Base Pairs 32.6.3 Dynamics of RNA-Protein Interactions 32.7 Characteristic RNA-Binding Motifs 32.8 Special Methods for the Analysis of RNA-Protein Complexes 32.8.1 Limited Enzymatic Hydrolyses 32.8.2 Labeling Methods 32.8.3 Primer Extension Analysis of RNA 32.8.4 Customary RNases 32.8.5 Chemcal Modification of RNA-Protein Complexes 32.8.6 Chemical Crosslinking 32.8.7 Incorporation of Photoreactive Nucleotides 32.8.8 Genome-Wide Identification of Transcription Start Sites (TSS) 32.9 Genetic Methods 32.9.1 Tri-hybrid Method 32.9.2 Aptamers and the Selex Procedure 32.9.3 Directed Mutations within Binding Domains Further Reading Part V: Functional and Systems Analytics Chapter 33: Sequence Data Analysis 33.1 Sequence Analysis and Bioinformatics 33.2 Sequence: An Abstraction for Biomolecules 33.3 Internet Databases and Services 33.3.1 Sequence Retrieval from Public Databases 33.3.2 Data Contents and File Format 33.3.3 Nucleotide Sequence Management in the Laboratory 33.4 Sequence Analysis on the Web 33.4.1 EMBOSS 33.5 Sequence Composition 33.6 Sequence Patterns 33.6.1 Transcription Factor Binding Sites 33.6.2 Identification of Coding Regions 33.6.3 Protein Localization 33.7 Homology 33.7.1 Identity, Similarity, Homology 33.7.2 Optimal Sequence Alignment 33.7.3 Alignment for Fast Database Searches: BLAST 33.7.4 Profile-Based Sensitive Database Search: PSI-BLAST 33.7.5 Homology Threshold 33.8 Multiple Alignment and Consensus Sequences 33.9 Structure Prediction 33.10 Outlook Chapter 34: Analysis of Promoter Strength and Nascent RNA Synthesis 34.1 Methods for the Analysis of RNA Transcripts 34.1.1 Overview 34.1.2 Nuclease S1 Analysis of RNA 34.1.3 Ribonuclease-Protection Assay (RPA) 34.1.4 Primer Extension Assay 34.1.5 Northern Blot and Dot- and Slot-Blot 34.1.6 Reverse Transcription Polymerase Chain Reaction (RT-PCR and RT-qPCR) 34.2 Analysis of RNA Synthesis In Vivo 34.2.1 Nuclear-run-on Assay 34.2.2 Labeling of Nascent RNA with 5-Fluoro-uridine (FUrd) 34.3 In Vitro Transcription in Cell-Free Extracts 34.3.1 Components of an In Vitro Transcription Assay 34.3.2 Generation of Transcription-Competent Cell Extracts and Protein Fractions 34.3.3 Template DNA and Detection of In Vitro Transcripts 34.4 In Vivo Analysis of Promoter Activity in Mammalian Cells 34.4.1 Vectors for Analysis of Gene-Regulatory cis-Elements 34.4.2 Transfer of DNA into Mammalian Cells 34.4.3 Analysis of Reporter Gene Expression Further Reading Chapter 35: Fluorescent In Situ Hybridization in Molecular Cytogenetics 35.1 Methods of Fluorescent DNA Hybridization 35.1.1 Labeling Strategy 35.1.2 DNA Probes 35.1.3 Labeling of DNA Probes 35.1.4 In Situ Hybridization 35.1.5 Evaluation of Fluorescent Hybridization Signals 35.2 Application: FISH and CGH 35.2.1 FISH Analysis of Genomic DNA 35.2.2 Comparative Genomic Hybridization (CGH) Further Reading Chapter 36: Physical and Genetic Mapping of Genomes 36.1 Genetic Mapping: Localization of Genetic Markers within the Genome 36.1.1 Recombination 36.1.2 Genetic Markers 36.1.3 Linkage Analysis - the Generation of Genetic Maps 36.1.4 Genetic Map of the Human Genome 36.1.5 Genetic Mapping of Disease Genes 36.2 Physical Mapping 36.2.1 Restriction Mapping of Whole Genomes 36.2.2 Mapping of Recombinant Clones 36.2.3 Generation of a Physical Map 36.2.4 Identification and Isolation of Genes 36.2.5 Transcription Maps of the Human Genome 36.2.6 Genes and Hereditary Disease - Search for Mutations 36.3 Integration of Genome Maps 36.4 The Human Genome Further Reading Chapter 37: DNA-Microarray Technology 37.1 RNA Analyses 37.1.1 Transcriptome Analysis 37.1.2 RNA Splicing 37.1.3 RNA Structure and Functionality 37.2 DNA Analyses 37.2.1 Genotyping 37.2.2 Methylation Studies 37.2.3 DNA Sequencing 37.2.4 Comparative Genomic Hybridization (CGH) 37.2.5 Protein-DNA Interactions 37.3 Molecule Synthesis 37.3.1 DNA Synthesis 37.3.2 RNA Production 37.3.3 On-Chip Protein Expression 37.4 Other Approaches 37.4.1 Barcode Identification 37.4.2 A Universal Microarray Platform 37.5 New Avenues 37.5.1 Structural Analyses 37.5.2 Beyond Nucleic Acids Further Reading Chapter 38: The Use of Oligonucleotides as Tools in Cell Biology 38.1 Antisense Oligonucleotides 38.1.1 Mechanisms of Antisense Oligonucleotides 38.1.2 Triplex-Forming Oligonucleotides 38.1.3 Modifications of Oligonucleotides to Decrease their Susceptibility to Nucleases 38.1.4 Use of Antisense Oligonucleotides in Cell Culture and in Animal Models 38.1.5 Antisense Oligonucleotides as Therapeutics 38.2 Ribozymes 38.2.1 Discovery and Classification of Ribozymes 38.2.2 Use of Ribozymes 38.3 RNA Interference and MicroRNAs 38.3.1 Basics of RNA Interference 38.3.2 RNA Interference Mediated by Expression Vectors 38.3.3 Uses of RNA Interference 38.3.4 microRNAs 38.4 Aptamers: High-Affinity RNA- and DNA-Oligonucleotides 38.4.1 Selection of Aptamers 38.4.2 Uses of Aptamers 38.5 Genome Editing with CRISPR/Cas9 38.6 Outlook Further Reading Chapter 39: Proteome Analysis 39.1 General Aspects in Proteome Analysis 39.2 Definition of Starting Conditions and Project Planning 39.3 Sample Preparation for Proteome Analysis 39.4 Protein Based Quantitative Proteome Analysis (Top-Down Proteomics) 39.4.1 Two-Dimensional-Gel-Based Proteomics 39.4.2 Two-Dimensional Differential Gel Electrophoresis (2D DIGE) 39.4.3 Top-Down Proteomics using Isotope Labels 39.4.4 Top-Down Proteomics using Intact Protein Mass Spectrometry 39.4.5 Concepts in Intact Protein Mass Spectrometry 39.5 Peptide Based Quantitative Proteome Analysis (Bottom-Up Proteomics) 39.5.1 Introduction 39.5.2 Bottom-Up Proteomics 39.5.3 Complexity of the Proteome 39.5.4 Bottom-Up Proteomic Strategies 39.5.5 Peptide Quantification 39.5.6 Data Dependent Analysis (DDA) 39.5.7 Selected Reaction Monitoring 39.5.8 SWATH-MS 39.5.9 Summary 39.5.10 Extensions 39.6 Stable Isotope Labeling in Quantitative Proteomics 39.6.1 Stable Isotope Label in Top-Down Proteomics 39.6.2 Stable Isotope Labeling in Bottom-Up Proteomics Further Reading Chapter 40: Metabolomics and Peptidomics 40.1 Systems Biology and Metabolomics 40.2 Technological Platforms for Metabolomics 40.3 Metabolomic Profiling 40.4 Peptidomics 40.5 Metabolomics - Knowledge Mining 40.6 Data Mining 40.7 Fields of Application 40.8 Outlook Further Reading Chapter 41: Interactomics - Systematic Protein-Protein Interactions 41.1 Protein Microarrays 41.1.1 Sensitivity Increase through Miniaturization - Ambient Analyte Assay 41.1.2 From DNA to Protein Microarrays 41.1.3 Application of Protein Microarrays Further Reading Chapter 42: Chemical Biology 42.1 Chemical Biology - Innovative Chemical Approaches to Study Biological Phenomena 42.2 Chemical Genetics - Small Organic Molecules for the Modulation of Protein Function 42.2.1 Study of Protein Functions with Small Organic Molecules 42.2.2 Forward and Reverse Chemical Genetics 42.2.3 The Bump-and-Hole Approach of Chemical Genetics 42.2.4 Identification of Kinase Substrates with ASKA Technology 42.2.5 Switching Biological Systems on and off with Small Organic Molecules 42.3 Expressed Protein Ligation - Symbiosis of Chemistry and Biology for the Study of Protein Functions 42.3.1 Analysis of Lipid-Modified Proteins 42.3.2 Analysis of Phosphorylated Proteins 42.3.3 Conditional Protein Splicing Further Reading Chapter 43: Toponome Analysis ``Life is Spatial´´ 43.1 Antibody Based Toponome Analysis using Imaging Cycler Microscopy (ICM) 43.1.1 Concept of the Protein Toponome 43.1.2 Imaging Cycler Robots: Fundament of a Toponome Reading Technology 43.1.3 Summary and Outlook Acknowledgements 43.2 Mass Spectrometry Imaging 43.2.1 Analytical Microprobes 43.2.2 Mass Spectrometric Pixel Images 43.2.3 Achievable Spatial Resolution 43.2.4 SIMS, ME-SIMS, and Cluster SIMS Imaging: Enhancing the Mass Range 43.2.5 Lateral Resolution and Analytical Limit of Detection 43.2.6 Coarse Screening by MS Imaging 43.2.7 Accurate MALDI Mass Spectrometry Imaging 43.2.8 Identification and Characterization of Analytes Further Reading Appendix 1: Amino Acids and Posttranslational Modifications Appendix 2: Symbols and Abbreviations Appendix 3: Standard Amino Acids (three and one letter code) Appendix 4: Nucleic Acid Bases Index End User License Agreement