دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Joginder Singh (editor), Vineet Meshram (editor), Mahiti Gupta (editor) سری: ISBN (شابک) : 9811513937, 9789811513930 ناشر: Springer سال نشر: 2020 تعداد صفحات: 722 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Bioactive Natural products in Drug Discovery به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محصولات طبیعی زیست فعال در کشف دارو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents About the Editors Part I: Plants Natural Products: Fountainheads for Drug Discovery and Development 1: The Artemisia Genus: Panacea to Several Maladies 1.1 Introduction 1.2 Phytochemistry 1.3 Conservation of Artemisia Species 1.4 Conclusions References 2: Bacopa monnieri: The Neuroprotective Elixir from the East-Phytochemistry, Pharmacology, and Biotechnological Improvement 2.1 Introduction 2.2 Methodology 2.3 Bioactivity Study 2.3.1 Biological Activities of Plant Extract(s) 2.3.1.1 Pro-cognitive Activity 2.3.1.2 Anti-neurodegenerative Activity 2.3.1.3 Antidepressant and Anti-stress Activity 2.3.1.4 Neuroprotective Activity 2.3.1.5 Cardioprotection 2.3.1.6 Gastrointestinal and Hepatoprotective Activity 2.3.1.7 Antiemetic Activity 2.3.1.8 Anti-epileptic Activity 2.3.1.9 Antioxidant Activity 2.3.1.10 Miscellaneous Activity 2.3.2 Pharmacological Activity of the Active Compounds 2.3.2.1 Bacoside A Anti-Alzheimer´s Activity Anti-apoptotic Activity Anti-epileptic Activity Antidepressant Activity Anti-dopaminergic Activity Anti-inflammatory Activity Antioxidant Activity Hepatoprotection Neuroprotection Protease Inhibition Activity Renoprotective Activity Wound-Healing Activity 2.3.2.2 Bacopaside I 2.3.2.3 Betulinic Acid 2.3.3 Pharmacological Activity of the Polyherbal Formulation(S) 2.3.3.1 Cognition 2.3.3.2 Hepatic Encephalopathy 2.4 Biotechnological Advancement 2.5 Toxicity Study 2.6 Drug Designing 2.7 Structure-Activity Relationship 2.8 Summary 2.9 Conclusion References 3: Current Knowledge of Cinnamomum Species: A Review on the Bioactive Components, Pharmacological Properties, Analytical and B... 3.1 Introduction 3.2 Botanical Description 3.3 Distribution 3.4 Traditional Use and Polyherbal Formulation of Cinnamon 3.5 Pharmacological Property of Cinnamomum Species 3.5.1 Anti-inflammatory Activity 3.5.2 Antibacterial Activity 3.5.3 Antifungal Activity 3.5.4 Antiviral Activity 3.5.5 Antioxidant Activity 3.5.6 Anticancer Activity 3.5.7 Gastroprotective Activity 3.5.8 Hypoglycemic/Anti-lipidemic Activity 3.5.9 Immunomodulatory Properties 3.5.10 Neuroprotective Activity 3.5.11 Cardioprotective Activity 3.6 Phytochemistry of Cinnamon 3.7 Clinical Study Based on Cinnamon 3.8 Extraction and Isolation of Bioactive Phytochemicals 3.9 Biotechnological Techniques for Large-Scale Multiplication of Cinnamomum Species 3.10 Molecular Markers for Genetic Diversity Assessment of Cinnamomum Species 3.11 Discussion and Conclusion References 4: Swertia spp.: A Potential Source of High-Value Bioactive Components, Pharmacology, and Analytical Techniques 4.1 Introduction 4.2 Botanical Description 4.2.1 Distribution of Swertia 4.2.2 Morphology of Swertia 4.3 Phytochemistry 4.3.1 Xanthones 4.3.2 Iridoid and Seco-Iridoid Glycosides 4.3.3 Terpenoids 4.3.4 Flavonoids 4.4 Analytical Techniques for Extraction and Quantification of Secondary Metabolites 4.4.1 Extraction Methods 4.4.2 Analytical Techniques 4.5 Pharmacology 4.5.1 Ethnobotanical Uses 4.5.2 Pharmacologically Significant Compounds 4.5.3 Biological Activities 4.5.3.1 Antidiabetic Activities 4.5.3.2 Antioxidant Activity 4.5.3.3 Hepatoprotective Activities 4.5.3.4 Antibacterial Activity 4.5.3.5 Anti-cancerous Activities 4.5.3.6 Neuroprotective Activity 4.5.3.7 Anti-HIV Activity 4.5.3.8 Antimalarial Activities 4.6 Conclusion References 5: The Genus Calophyllum: Review of Ethnomedicinal Uses, Phytochemistry and Pharmacology 5.1 Introduction 5.2 Morphology and Taxonomy 5.3 Ethnomedicinal Uses 5.4 Phytochemistry 5.4.1 Coumarins 5.4.2 Xanthones 5.4.3 Chromanones 5.4.4 Triterpenes and Steroid 5.4.5 Glycosides 5.4.6 Miscellaneous 5.5 Bioactivities of Genus Calophyllum 5.5.1 Antiviral Activity 5.5.2 Antimicrobial Activity 5.5.3 Inhibition of the Multidrug Transporter P-glycoprotein 5.5.4 Anticancer Activity 5.5.5 Antimalarial Activity 5.5.6 Anti-parasite Activity 5.5.7 Sulphotransferase Inhibitor 5.5.8 Anti-dyslipidaemic Activity 5.5.9 Antioxidant Activity and Anti-inflammatory Activity 5.5.10 Hypotensive Activity 5.5.11 α-Glucosidase Activity 5.5.12 Other Activities 5.6 Conclusions References Part II: Plant Derived Natural Products as Leads for Drug Discovery 6: Plant-Derived Quinones as a Source of Antibacterial and Anticancer Agents 6.1 Introduction 6.2 Quinone Mode of Action 6.3 Bioactive Quinones from Natural Resources 6.3.1 Thymoquinone 6.3.2 Plumbagin 6.3.3 Shikonin 6.3.4 Embelin 6.3.5 Emodin 6.3.6 β-Lapachone 6.3.7 Juglone 6.3.8 Salvicine 6.4 Summary and Conclusion References 7: Drugging Protein-Protein Interaction Interface with Natural Products: A Computational Approach 7.1 Natural Products as Drug Leads 7.2 Protein-Protein Interactions 7.3 Methods in Computational Drug Discovery 7.4 Methods in SBDD 7.4.1 Protein Structure Modelling 7.4.1.1 Homology or Comparative Modelling 7.4.2 Molecular Docking 7.4.2.1 Protein-Protein Docking 7.4.2.2 Protein-Ligand Docking 7.4.3 Molecular Dynamic (MD) Simulations 7.5 Conclusion References 8: CQDs Derived from Natural Sources: Excellent Bioimaging Agents 8.1 Introduction 8.2 Methods to Prepare CQDs 8.2.1 Chemical Ablation 8.2.2 Microwave Irradiation 8.2.3 Hydrothermal Treatment 8.2.4 Laser Ablation 8.2.5 Electrochemical Carbonization 8.3 Various Natural Precursors for CQD Synthesis 8.4 Functional Groups Present in CQDs 8.5 Shape and Size Determination of CQDs 8.6 UV-Visible Absorption Spectra of CQDs 8.7 Photoluminescence Properties of CQDs 8.8 Excellent Imaging Agents for Biomedical Applications 8.9 Conclusions References Part III: Microbial Natural Products: A Quintessential Source for Drug Discovery and Development 9: Microbial Natural Products: Recent Insights into Novel Applications 9.1 Introduction 9.2 Applications 9.2.1 Bioremediation 9.2.2 Biosurfactants 9.2.3 Anti-biofilm Compounds 9.2.4 Drugs 9.2.4.1 Antitumour Drugs 9.2.4.2 Antimicrobial Compounds 9.2.5 Pigments 9.2.6 Probiotics and Nutraceuticals 9.2.7 High-Value Molecules 9.3 Novel Strategies for the Characterisation of Natural Microbial Products 9.4 Conclusions and Future Perspectives References 10: Bioactive Peptides and Carbohydrates from Natural Products: A Source of Functional Foods and Nutraceuticals 10.1 Introduction 10.2 Plant-Based Bioactive Components as a Source of Nutraceuticals 10.2.1 Bioactive Peptides 10.2.1.1 Maize as a Source of Bioactive Peptide 10.2.1.2 Amaranthus as a Source of Bioactive Peptide 10.2.1.3 Chia as a Source of Bioactive Peptide 10.3 Algae-Based Bioactive Components as a Source of Nutraceuticals 10.3.1 Proteins 10.3.2 Polysaccharides 10.4 Fungal Polysaccharide as a Source of Nutraceuticals 10.4.1 Types and Sources of Bioactive Fungal Polysaccharides 10.5 Animal Protein as a Source of Nutraceutical 10.5.1 Bovine Milk 10.5.2 Antihypertensive Effects 10.5.3 Antithrombosis 10.5.4 Antioxidant 10.5.5 Hypolipidaemic Effects 10.5.6 Immunomodulating Effects 10.5.7 Antidiabetic Effect 10.6 Challenges Associated with the Production of Bioactive Components 10.7 A Novel Mechanism to Increase the Functional Properties of Nutraceuticals 10.8 Conclusion References 11: Metabolites of Fluorescent Pseudomonads and Their Antimicrobial and Anticancer Potentials 11.1 Introduction 11.2 Fluorescent Pseudomonad Metabolites 11.2.1 Polyketides 11.2.1.1 Pyoluteorin 11.2.1.2 Phloroglucinols 11.2.1.3 Mupirocin 11.2.1.4 Rhizoxin 11.2.2 Peptides 11.2.3 Pyrrole-Type Compounds 11.2.4 Volatiles 11.2.5 Phenazines 11.3 Antimicrobial Activity of Fluorescent Pseudomonad Metabolites 11.4 Anticancer Activity of Fluorescent Pseudomonad Metabolites 11.5 Cancer and Apoptosis 11.5.1 Regulatory Mechanism of Cancer 11.6 Apoptotic Potential of Fluorescent Pseudomonad Metabolites 11.6.1 Phenazine-1-carboxylic Acid (PCA) 11.6.2 5-Methyl Phenazine-1-Carboxylic Acid Betaine (MPCAB) 11.6.3 Phenazine-1-carboxamide (PCN) 11.6.4 2,4-Diacetylphloroglucinol (DAPG) 11.7 Conclusion References 12: Ganoderma: A Propitious Medicinal Poroid Mushroom 12.1 Introduction 12.2 Herbal History of Ganoderma 12.3 Bioactive Constituents of Ganoderma 12.3.1 Polysaccharides 12.3.2 Triterpenoids 12.3.3 Proteins 12.3.4 Other Compounds 12.4 Biological Activities of Ganoderma 12.5 Antioxidant Activity 12.6 Immunomodulation Activity 12.7 Anticancer Activity 12.8 Anti-inflammatory Activity 12.9 Anti-allergic Activity 12.10 Antidiabetic Effects 12.11 Hepatoprotective Activity 12.12 Antimicrobial Activity 12.12.1 Antibacterial Activity 12.12.2 Antiviral Activity 12.12.3 Antifungal Activity 12.13 Effects on Central Nervous System 12.14 Other Biological Effects 12.15 Conclusions References 13: Pharmaceutically Important Metabolites from Marine Fungi 13.1 Introduction 13.2 Preferred Habitat 13.3 Food Source 13.4 Classification of Fungi from the Marine Environment 13.5 Environmental Special Effects of Fungi in the Oceanic Atmosphere 13.6 Pharmaceutical Compounds from Fungi 13.6.1 Cladosporium sp. 13.6.2 Penicillium sp. 13.6.3 Nigrospora sp. 13.6.4 Aspergillus sp. 13.6.5 Aspergillus sp. 13.6.6 Stachybotrys sp. 13.6.7 Trichoderma sp. 13.6.8 Fusarium sp. 13.6.9 Pestalotiopsis sp. 13.6.10 Zopfiella latipes 13.6.11 Drechslera dematioidea 13.6.12 Ascochyta salicorniae 13.6.13 Halorosellinia oceanica BCC5149 13.6.14 Phoma herbarum 13.6.15 Exophiala 13.6.16 Chaetomium sp. 13.6.17 Curvularia sp. 13.6.18 Spicellum roseum 13.6.19 Massarina sp. 13.6.20 Aspergillus carbonarius 13.6.21 Aspergillus ustus 13.6.22 Petriella sp. 13.6.23 Aspergillus aculeatus 13.6.24 Aspergillus glaucus 13.6.25 Aspergillus versicolor 13.6.26 Aspergillus sydowii 13.6.27 Cosmospora sp. 13.7 Conclusion References 14: Endophytic Fungi: A Treasure Trove of Novel Bioactive Compounds 14.1 Introduction 14.2 What Is an Endophyte? 14.3 Endophytic Fungi: A Warehouse of Bioactive Metabolites 14.3.1 Altenusin 14.3.2 Ambuic Acid 14.3.3 Beauvericin 14.3.4 Brefeldin A 14.3.5 Griseofulvin 14.3.6 Azaphilones 14.3.7 Cytochalasa(i)ns 14.3.8 Chaetoglobosin 14.3.9 Phomoxanthone 14.4 Conclusion References 15: Novel Products from Microalgae 15.1 Introduction 15.2 Microalgae 15.2.1 Chlorella vulgaris 15.2.2 Spirulina 15.2.3 Nostoc 15.2.4 Haematococcus pluvialis 15.2.5 Dunaliella salina 15.3 Value-Added Products from Microalgae 15.3.1 Lutein 15.3.2 Astaxanthin 15.3.3 Zeaxanthin 15.3.4 Beta-Carotene 15.3.5 Lycopene 15.3.6 Fatty Acids 15.3.7 Docosahexaenoic Acid and Eicosapentaenoic Acid 15.3.8 Tocopherols and Sterols 15.3.9 Polysaccharides 15.3.10 Enzymes and Proteins 15.3.11 Vitamins 15.4 Microalgae as Nutraceuticals 15.5 Microalgae and Animal Feed 15.6 Microalgae and Cosmetics 15.7 Microalgae and Biofuel 15.8 Microalgae and Pharmaceuticals 15.9 Antiviral Activity of Microalgae 15.10 Anticancer Activity of Microalgae 15.11 Antimicrobial Activity of Microalgae 15.12 Conclusion References 16: Lactic Acid Production and Its Application in Pharmaceuticals 16.1 Introduction 16.2 Lactic Acid Pathway 16.3 Biomass for Lactic Acid Production 16.4 Fermentation 16.5 Kinetic Modelling for Lactic Acid Production 16.6 Downstream Processing of Lactic Acid 16.7 Applications of Polylactic Acid 16.8 Conclusions and Future Perspectives References 17: Microbial Clot Busters: An Overview of Source, Production, Properties and Fibrinolytic Activity 17.1 Introduction 17.2 The Evolutionary Trend in Thrombolytic Therapy 17.2.1 The First Generation of Thrombolytic Drugs 17.2.1.1 Streptokinase 17.2.1.2 Urokinase 17.2.2 The Second Generation of Thrombolytic Drug 17.2.2.1 Anistreplase (Acylated Plasminogen-Streptokinase Activator Complex) 17.2.2.2 Pro-urokinase 17.2.2.3 Alteplase 17.2.3 Third Generations of Thrombolytic Drug 17.2.3.1 Reteplase 17.2.3.2 Tenecteplase 17.2.3.3 Lantoplase 17.2.3.4 Monteplase 17.2.3.5 Pamitelase 17.2.3.6 Desmoteplase 17.2.3.7 Staphylokinase 17.3 Fibrinolytic Agents from Microorganisms 17.3.1 Fibrinolytic Agents from Bacteria 17.3.2 Fibrinolytic Agents from Algae 17.3.3 Fibrinolytic Agents from Actinomycetes 17.3.4 Fibrinolytic Agents from Fungi 17.3.5 Fibrinolytic Agents from Endophytic Fungi 17.4 Conclusion References 18: Carbohydrate Biopolymers: Diversity, Applications, and Challenges 18.1 Introduction 18.2 Carbohydrate Biopolymers 18.2.1 Cellulose 18.2.2 Starch 18.2.3 Chitin and Chitosan 18.2.4 Carrageenan 18.2.5 Alginate 18.2.6 Other Important Polysaccharides 18.3 Challenges in Applications 18.4 Conclusions References Part IV: Important Biotechnological Applications of Natural Products 19: Biotechnological Aspects of Nanoparticles Driven from Natural Products for Drug Delivery System and Other Applications 19.1 Introduction 19.1.1 Nanoparticles from Natural Products 19.1.2 Approaches in Selecting, Screening and Discovery of Natural Products as the Potential for Drug Discovery and Development 19.1.3 Screening and Design 19.1.4 Isolation and Purification 19.1.5 Identification of Biologically Active Material 19.1.6 Structure-Activity and Structure-Property Relationships of Natural Products 19.2 Nanoparticles in Drug Delivery 19.3 Other Applications of Nanoparticles 19.3.1 Nanoparticles in Agriculture 19.3.2 Industrial Applications of Nanoparticles 19.3.3 Nanoparticles in Food Industry 19.3.4 Nanoparticles in Cosmetics 19.3.5 Nanoparticles in Textiles 19.3.5.1 Development of Nanofibres 19.3.5.2 Enhancing Self-Cleaning Properties of Fabrics 19.3.5.3 UV Blocking/Protection 19.3.5.4 Antibacterial and Wrinkle-Resistant Mechanism 19.3.5.5 Anti-static Property and Water-Repelling Properties of Fibres 19.4 Challenges and Nanotoxicity 19.5 Future Perspective and Challenges in the Natural Product Drug Discovery 19.6 Conclusion References 20: Methods and Techniques for the Chemical Profiling and Quality Control of Natural Products and Natural Product-Derived Drugs 20.1 Introduction 20.2 Natural Product-Based Drug Discovery 20.3 Physicochemical Analysis of Natural Products and Natural Product-Derived Drugs 20.4 Phytochemical Analysis of Natural Products and Natural Product-Derived Drugs 20.5 Quantitative Analysis to Characterize the Phytochemicals of Natural Products and Natural Product-Derived Drugs 20.6 High-Performance Thin-Layer Chromatography 20.7 UV-Visible Spectroscopy 20.8 Infrared Spectroscopy 20.9 Nuclear Magnetic Resonance Spectroscopy (NMR) 20.10 Mass Spectrometry 20.11 Need of Analogue Synthesis of Natural Products 20.12 Conclusion and Future Prospects References 21: Characterization of Bioactive Secondary Metabolites of Fungal Endophytes from Melghat Forest in Maharashtra, India 21.1 Introduction 21.2 Materials and Methods 21.2.1 Collection of Plant Samples 21.2.2 Isolation of Endophytic Fungi 21.2.3 Production of Secondary Metabolites and Solvent Extraction 21.2.4 In Vitro Antibacterial Activity via Kirby-Bauer (KB) Disk Assay 21.2.5 GC/MS Analysis of the EA Crude Residue 21.3 Results 21.3.1 Isolation of Endophytic Fungi 21.3.2 In Vitro Antibacterial Activity via KB Disc Assay 21.3.3 GC/MS Analysis of the EA Crude Residue 21.4 Discussion 21.5 Conclusion References 22: Modulation of Cellular Protein Quality Control Pathways Using Small Natural Molecules 22.1 Introduction 22.2 Cellular Protein Quality Control Pathways: Multiple Arms Converging for a Common Goal 22.3 Exploiting Protein Quality Control Pathways for Therapeutics Against Major Human Pathologies 22.4 Natural Molecules as the Modulators of Cellular Proteostasis Mechanisms 22.4.1 Small Molecules Enhancing Cellular Chaperoning Capacities 22.4.2 Natural Modulators of Autophagic Pathway 22.4.3 Targeting Diseases by Regulating Proteolytic Activities of the Proteasome 22.5 Concluding Remarks and Future Perspectives References 23: Elaborating on the Potential for Mushroom-Based Product Market Expansion: Consumers´ Attitudes and Purchasing Intentions 23.1 Introduction 23.2 The World Market of Mushroom-Based Products: The Relation of Practice and Literature 23.3 An Overview of Mushroom-Based Products 23.4 Potential of Medicinal Mushrooms to Be Used as a Source of Natural Products 23.4.1 Active Chemical Compounds of Medicinal Mushrooms 23.4.2 Mushroom Polysaccharides 23.4.3 Commercial Mushroom-Based Products 23.4.3.1 Krestin 23.4.3.2 Lentinan 23.4.3.3 Ganopoly 23.5 Internal Factors That Shape Consumer Attitudes and Purchasing Behavior Towards Mushroom-Based Products 23.5.1 Sociodemographic Characteristics 23.5.2 Psychographic and Behavioral Characteristics 23.6 External Factors That Shape Consumer Attitudes and Purchasing Behavior Towards Mushroom-Based Products 23.7 Rising the Market Potential for Mushroom-Based Products 23.8 Conclusion References 24: The Role of Algae in Nutraceutical and Pharmaceutical Production 24.1 Introduction 24.2 Growth Environment of Algae 24.3 High-Value Products from Algae 24.3.1 Role of Algae in Nutraceuticals 24.3.1.1 Vitamins 24.3.1.2 Fatty Acids 24.3.1.3 Polyunsaturated Fatty Acids (PUFA) Docosahexaenoic Acid (DHA) Eicosapentaenoic Acids (EPA) Arachidonic Acid (AA) 24.3.1.4 Carotenoids 24.3.1.5 Sterols 24.3.1.6 Proteins and Enzymes 24.3.2 Role of Algae in Pharmaceuticals 24.4 Bioactivity of Compounds from Algae 24.4.1 Antioxidant Activity 24.4.2 Antiangiogenic, Cytotoxic, and Anticancer Activities 24.4.3 Antiobesity Activity 24.4.4 Antimicrobial Activity 24.4.5 Antiprotozoal Activity 24.5 Market Potential of Algal Products 24.6 Future of Natural Products from Algae References 25: Microbial Interventions to Induce Secondary Metabolite Biosynthesis in Medicinal and Aromatic Plants 25.1 Introduction 25.2 Secondary Metabolites 25.2.1 Terpenoids 25.2.2 Alkaloids 25.2.3 Benzylisoquinoline Alkaloids 25.2.4 Bisbenzylisoquinoline Alkaloids 25.3 Biosynthetic Pathways in MAPs 25.3.1 The Polyketide Pathway 25.3.2 Mevalonate and Deoxyxylulose-5-Phosphate Pathways for Synthesis of Terpene 25.3.3 Shikimate Pathway 25.3.4 Polyamine Pathway 25.3.5 Mixed Biosynthetic Pathways 25.4 Basic Outline and Variety of Bioactive Molecules 25.5 Plant Growth-Promoting Microorganisms (PGPMs) 25.6 Mechanisms of PGPM-Induced Secondary Metabolite Synthesis in MAPs 25.7 Conclusion and Future Perspectives References 26: Peptaibols: Antimicrobial Peptides from Fungi 26.1 Introduction 26.2 Early Discovery and Naming 26.3 Characteristics of Peptaibols 26.4 Chain Length and Residue Types 26.5 Classification of Peptaibols 26.6 Biosynthesis of Peptaibols 26.6.1 Initiation or Adenylation 26.6.2 Elongation or Thiolation 26.6.3 Termination 26.7 Detection of Peptaibols Using Modern Techniques 26.8 Structure of Peptaibols 26.9 Mode of Action 26.10 Bioinformatics and Synthetic Peptides 26.11 Applications and Functions of Peptaibols 26.12 Conclusion References Index