ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Bioactive Natural products in Drug Discovery

دانلود کتاب محصولات طبیعی زیست فعال در کشف دارو

Bioactive Natural products in Drug Discovery

مشخصات کتاب

Bioactive Natural products in Drug Discovery

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9811513937, 9789811513930 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 722 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 15 مگابایت 

قیمت کتاب (تومان) : 48,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Bioactive Natural products in Drug Discovery به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب محصولات طبیعی زیست فعال در کشف دارو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Contents
About the Editors
Part I: Plants Natural Products: Fountainheads for Drug Discovery and Development
	1: The Artemisia Genus: Panacea to Several Maladies
		1.1 Introduction
		1.2 Phytochemistry
		1.3 Conservation of Artemisia Species
		1.4 Conclusions
		References
	2: Bacopa monnieri: The Neuroprotective Elixir from the East-Phytochemistry, Pharmacology, and Biotechnological Improvement
		2.1 Introduction
		2.2 Methodology
		2.3 Bioactivity Study
			2.3.1 Biological Activities of Plant Extract(s)
				2.3.1.1 Pro-cognitive Activity
				2.3.1.2 Anti-neurodegenerative Activity
				2.3.1.3 Antidepressant and Anti-stress Activity
				2.3.1.4 Neuroprotective Activity
				2.3.1.5 Cardioprotection
				2.3.1.6 Gastrointestinal and Hepatoprotective Activity
				2.3.1.7 Antiemetic Activity
				2.3.1.8 Anti-epileptic Activity
				2.3.1.9 Antioxidant Activity
				2.3.1.10 Miscellaneous Activity
			2.3.2 Pharmacological Activity of the Active Compounds
				2.3.2.1 Bacoside A
					Anti-Alzheimer´s Activity
					Anti-apoptotic Activity
					Anti-epileptic Activity
					Antidepressant Activity
					Anti-dopaminergic Activity
					Anti-inflammatory Activity
					Antioxidant Activity
					Hepatoprotection
					Neuroprotection
					Protease Inhibition Activity
					Renoprotective Activity
					Wound-Healing Activity
				2.3.2.2 Bacopaside I
				2.3.2.3 Betulinic Acid
			2.3.3 Pharmacological Activity of the Polyherbal Formulation(S)
				2.3.3.1 Cognition
				2.3.3.2 Hepatic Encephalopathy
		2.4 Biotechnological Advancement
		2.5 Toxicity Study
		2.6 Drug Designing
		2.7 Structure-Activity Relationship
		2.8 Summary
		2.9 Conclusion
		References
	3: Current Knowledge of Cinnamomum Species: A Review on the Bioactive Components, Pharmacological Properties, Analytical and B...
		3.1 Introduction
		3.2 Botanical Description
		3.3 Distribution
		3.4 Traditional Use and Polyherbal Formulation of Cinnamon
		3.5 Pharmacological Property of Cinnamomum Species
			3.5.1 Anti-inflammatory Activity
			3.5.2 Antibacterial Activity
			3.5.3 Antifungal Activity
			3.5.4 Antiviral Activity
			3.5.5 Antioxidant Activity
			3.5.6 Anticancer Activity
			3.5.7 Gastroprotective Activity
			3.5.8 Hypoglycemic/Anti-lipidemic Activity
			3.5.9 Immunomodulatory Properties
			3.5.10 Neuroprotective Activity
			3.5.11 Cardioprotective Activity
		3.6 Phytochemistry of Cinnamon
		3.7 Clinical Study Based on Cinnamon
		3.8 Extraction and Isolation of Bioactive Phytochemicals
		3.9 Biotechnological Techniques for Large-Scale Multiplication of Cinnamomum Species
		3.10 Molecular Markers for Genetic Diversity Assessment of Cinnamomum Species
		3.11 Discussion and Conclusion
		References
	4: Swertia spp.: A Potential Source of High-Value Bioactive Components, Pharmacology, and Analytical Techniques
		4.1 Introduction
		4.2 Botanical Description
			4.2.1 Distribution of Swertia
			4.2.2 Morphology of Swertia
		4.3 Phytochemistry
			4.3.1 Xanthones
			4.3.2 Iridoid and Seco-Iridoid Glycosides
			4.3.3 Terpenoids
			4.3.4 Flavonoids
		4.4 Analytical Techniques for Extraction and Quantification of Secondary Metabolites
			4.4.1 Extraction Methods
			4.4.2 Analytical Techniques
		4.5 Pharmacology
			4.5.1 Ethnobotanical Uses
			4.5.2 Pharmacologically Significant Compounds
			4.5.3 Biological Activities
				4.5.3.1 Antidiabetic Activities
				4.5.3.2 Antioxidant Activity
				4.5.3.3 Hepatoprotective Activities
				4.5.3.4 Antibacterial Activity
				4.5.3.5 Anti-cancerous Activities
				4.5.3.6 Neuroprotective Activity
				4.5.3.7 Anti-HIV Activity
				4.5.3.8 Antimalarial Activities
		4.6 Conclusion
		References
	5: The Genus Calophyllum: Review of Ethnomedicinal Uses, Phytochemistry and Pharmacology
		5.1 Introduction
		5.2 Morphology and Taxonomy
		5.3 Ethnomedicinal Uses
		5.4 Phytochemistry
			5.4.1 Coumarins
			5.4.2 Xanthones
			5.4.3 Chromanones
			5.4.4 Triterpenes and Steroid
			5.4.5 Glycosides
			5.4.6 Miscellaneous
		5.5 Bioactivities of Genus Calophyllum
			5.5.1 Antiviral Activity
			5.5.2 Antimicrobial Activity
			5.5.3 Inhibition of the Multidrug Transporter P-glycoprotein
			5.5.4 Anticancer Activity
			5.5.5 Antimalarial Activity
			5.5.6 Anti-parasite Activity
			5.5.7 Sulphotransferase Inhibitor
			5.5.8 Anti-dyslipidaemic Activity
			5.5.9 Antioxidant Activity and Anti-inflammatory Activity
			5.5.10 Hypotensive Activity
			5.5.11 α-Glucosidase Activity
			5.5.12 Other Activities
		5.6 Conclusions
		References
Part II: Plant Derived Natural Products as Leads for Drug Discovery
	6: Plant-Derived Quinones as a Source of Antibacterial and Anticancer Agents
		6.1 Introduction
		6.2 Quinone Mode of Action
		6.3 Bioactive Quinones from Natural Resources
			6.3.1 Thymoquinone
			6.3.2 Plumbagin
			6.3.3 Shikonin
			6.3.4 Embelin
			6.3.5 Emodin
			6.3.6 β-Lapachone
			6.3.7 Juglone
			6.3.8 Salvicine
		6.4 Summary and Conclusion
		References
	7: Drugging Protein-Protein Interaction Interface with Natural Products: A Computational Approach
		7.1 Natural Products as Drug Leads
		7.2 Protein-Protein Interactions
		7.3 Methods in Computational Drug Discovery
		7.4 Methods in SBDD
			7.4.1 Protein Structure Modelling
				7.4.1.1 Homology or Comparative Modelling
			7.4.2 Molecular Docking
				7.4.2.1 Protein-Protein Docking
				7.4.2.2 Protein-Ligand Docking
			7.4.3 Molecular Dynamic (MD) Simulations
		7.5 Conclusion
		References
	8: CQDs Derived from Natural Sources: Excellent Bioimaging Agents
		8.1 Introduction
		8.2 Methods to Prepare CQDs
			8.2.1 Chemical Ablation
			8.2.2 Microwave Irradiation
			8.2.3 Hydrothermal Treatment
			8.2.4 Laser Ablation
			8.2.5 Electrochemical Carbonization
		8.3 Various Natural Precursors for CQD Synthesis
		8.4 Functional Groups Present in CQDs
		8.5 Shape and Size Determination of CQDs
		8.6 UV-Visible Absorption Spectra of CQDs
		8.7 Photoluminescence Properties of CQDs
		8.8 Excellent Imaging Agents for Biomedical Applications
		8.9 Conclusions
		References
Part III: Microbial Natural Products: A Quintessential Source for Drug Discovery and Development
	9: Microbial Natural Products: Recent Insights into Novel Applications
		9.1 Introduction
		9.2 Applications
			9.2.1 Bioremediation
			9.2.2 Biosurfactants
			9.2.3 Anti-biofilm Compounds
			9.2.4 Drugs
				9.2.4.1 Antitumour Drugs
				9.2.4.2 Antimicrobial Compounds
			9.2.5 Pigments
			9.2.6 Probiotics and Nutraceuticals
			9.2.7 High-Value Molecules
		9.3 Novel Strategies for the Characterisation of Natural Microbial Products
		9.4 Conclusions and Future Perspectives
		References
	10: Bioactive Peptides and Carbohydrates from Natural Products: A Source of Functional Foods and Nutraceuticals
		10.1 Introduction
		10.2 Plant-Based Bioactive Components as a Source of Nutraceuticals
			10.2.1 Bioactive Peptides
				10.2.1.1 Maize as a Source of Bioactive Peptide
				10.2.1.2 Amaranthus as a Source of Bioactive Peptide
				10.2.1.3 Chia as a Source of Bioactive Peptide
		10.3 Algae-Based Bioactive Components as a Source of Nutraceuticals
			10.3.1 Proteins
			10.3.2 Polysaccharides
		10.4 Fungal Polysaccharide as a Source of Nutraceuticals
			10.4.1 Types and Sources of Bioactive Fungal Polysaccharides
		10.5 Animal Protein as a Source of Nutraceutical
			10.5.1 Bovine Milk
			10.5.2 Antihypertensive Effects
			10.5.3 Antithrombosis
			10.5.4 Antioxidant
			10.5.5 Hypolipidaemic Effects
			10.5.6 Immunomodulating Effects
			10.5.7 Antidiabetic Effect
		10.6 Challenges Associated with the Production of Bioactive Components
		10.7 A Novel Mechanism to Increase the Functional Properties of Nutraceuticals
		10.8 Conclusion
		References
	11: Metabolites of Fluorescent Pseudomonads and Their Antimicrobial and Anticancer Potentials
		11.1 Introduction
		11.2 Fluorescent Pseudomonad Metabolites
			11.2.1 Polyketides
				11.2.1.1 Pyoluteorin
				11.2.1.2 Phloroglucinols
				11.2.1.3 Mupirocin
				11.2.1.4 Rhizoxin
			11.2.2 Peptides
			11.2.3 Pyrrole-Type Compounds
			11.2.4 Volatiles
			11.2.5 Phenazines
		11.3 Antimicrobial Activity of Fluorescent Pseudomonad Metabolites
		11.4 Anticancer Activity of Fluorescent Pseudomonad Metabolites
		11.5 Cancer and Apoptosis
			11.5.1 Regulatory Mechanism of Cancer
		11.6 Apoptotic Potential of Fluorescent Pseudomonad Metabolites
			11.6.1 Phenazine-1-carboxylic Acid (PCA)
			11.6.2 5-Methyl Phenazine-1-Carboxylic Acid Betaine (MPCAB)
			11.6.3 Phenazine-1-carboxamide (PCN)
			11.6.4 2,4-Diacetylphloroglucinol (DAPG)
		11.7 Conclusion
		References
	12: Ganoderma: A Propitious Medicinal Poroid Mushroom
		12.1 Introduction
		12.2 Herbal History of Ganoderma
		12.3 Bioactive Constituents of Ganoderma
			12.3.1 Polysaccharides
			12.3.2 Triterpenoids
			12.3.3 Proteins
			12.3.4 Other Compounds
		12.4 Biological Activities of Ganoderma
		12.5 Antioxidant Activity
		12.6 Immunomodulation Activity
		12.7 Anticancer Activity
		12.8 Anti-inflammatory Activity
		12.9 Anti-allergic Activity
		12.10 Antidiabetic Effects
		12.11 Hepatoprotective Activity
		12.12 Antimicrobial Activity
			12.12.1 Antibacterial Activity
			12.12.2 Antiviral Activity
			12.12.3 Antifungal Activity
		12.13 Effects on Central Nervous System
		12.14 Other Biological Effects
		12.15 Conclusions
		References
	13: Pharmaceutically Important Metabolites from Marine Fungi
		13.1 Introduction
		13.2 Preferred Habitat
		13.3 Food Source
		13.4 Classification of Fungi from the Marine Environment
		13.5 Environmental Special Effects of Fungi in the Oceanic Atmosphere
		13.6 Pharmaceutical Compounds from Fungi
			13.6.1 Cladosporium sp.
			13.6.2 Penicillium sp.
			13.6.3 Nigrospora sp.
			13.6.4 Aspergillus sp.
			13.6.5 Aspergillus sp.
			13.6.6 Stachybotrys sp.
			13.6.7 Trichoderma sp.
			13.6.8 Fusarium sp.
			13.6.9 Pestalotiopsis sp.
			13.6.10 Zopfiella latipes
			13.6.11 Drechslera dematioidea
			13.6.12 Ascochyta salicorniae
			13.6.13 Halorosellinia oceanica BCC5149
			13.6.14 Phoma herbarum
			13.6.15 Exophiala
			13.6.16 Chaetomium sp.
			13.6.17 Curvularia sp.
			13.6.18 Spicellum roseum
			13.6.19 Massarina sp.
			13.6.20 Aspergillus carbonarius
			13.6.21 Aspergillus ustus
			13.6.22 Petriella sp.
			13.6.23 Aspergillus aculeatus
			13.6.24 Aspergillus glaucus
			13.6.25 Aspergillus versicolor
			13.6.26 Aspergillus sydowii
			13.6.27 Cosmospora sp.
		13.7 Conclusion
		References
	14: Endophytic Fungi: A Treasure Trove of Novel Bioactive Compounds
		14.1 Introduction
		14.2 What Is an Endophyte?
		14.3 Endophytic Fungi: A Warehouse of Bioactive Metabolites
			14.3.1 Altenusin
			14.3.2 Ambuic Acid
			14.3.3 Beauvericin
			14.3.4 Brefeldin A
			14.3.5 Griseofulvin
			14.3.6 Azaphilones
			14.3.7 Cytochalasa(i)ns
			14.3.8 Chaetoglobosin
			14.3.9 Phomoxanthone
		14.4 Conclusion
		References
	15: Novel Products from Microalgae
		15.1 Introduction
		15.2 Microalgae
			15.2.1 Chlorella vulgaris
			15.2.2 Spirulina
			15.2.3 Nostoc
			15.2.4 Haematococcus pluvialis
			15.2.5 Dunaliella salina
		15.3 Value-Added Products from Microalgae
			15.3.1 Lutein
			15.3.2 Astaxanthin
			15.3.3 Zeaxanthin
			15.3.4 Beta-Carotene
			15.3.5 Lycopene
			15.3.6 Fatty Acids
			15.3.7 Docosahexaenoic Acid and Eicosapentaenoic Acid
			15.3.8 Tocopherols and Sterols
			15.3.9 Polysaccharides
			15.3.10 Enzymes and Proteins
			15.3.11 Vitamins
		15.4 Microalgae as Nutraceuticals
		15.5 Microalgae and Animal Feed
		15.6 Microalgae and Cosmetics
		15.7 Microalgae and Biofuel
		15.8 Microalgae and Pharmaceuticals
		15.9 Antiviral Activity of Microalgae
		15.10 Anticancer Activity of Microalgae
		15.11 Antimicrobial Activity of Microalgae
		15.12 Conclusion
		References
	16: Lactic Acid Production and Its Application in Pharmaceuticals
		16.1 Introduction
		16.2 Lactic Acid Pathway
		16.3 Biomass for Lactic Acid Production
		16.4 Fermentation
		16.5 Kinetic Modelling for Lactic Acid Production
		16.6 Downstream Processing of Lactic Acid
		16.7 Applications of Polylactic Acid
		16.8 Conclusions and Future Perspectives
		References
	17: Microbial Clot Busters: An Overview of Source, Production, Properties and Fibrinolytic Activity
		17.1 Introduction
		17.2 The Evolutionary Trend in Thrombolytic Therapy
			17.2.1 The First Generation of Thrombolytic Drugs
				17.2.1.1 Streptokinase
				17.2.1.2 Urokinase
			17.2.2 The Second Generation of Thrombolytic Drug
				17.2.2.1 Anistreplase (Acylated Plasminogen-Streptokinase Activator Complex)
				17.2.2.2 Pro-urokinase
				17.2.2.3 Alteplase
			17.2.3 Third Generations of Thrombolytic Drug
				17.2.3.1 Reteplase
				17.2.3.2 Tenecteplase
				17.2.3.3 Lantoplase
				17.2.3.4 Monteplase
				17.2.3.5 Pamitelase
				17.2.3.6 Desmoteplase
				17.2.3.7 Staphylokinase
		17.3 Fibrinolytic Agents from Microorganisms
			17.3.1 Fibrinolytic Agents from Bacteria
			17.3.2 Fibrinolytic Agents from Algae
			17.3.3 Fibrinolytic Agents from Actinomycetes
			17.3.4 Fibrinolytic Agents from Fungi
			17.3.5 Fibrinolytic Agents from Endophytic Fungi
		17.4 Conclusion
		References
	18: Carbohydrate Biopolymers: Diversity, Applications, and Challenges
		18.1 Introduction
		18.2 Carbohydrate Biopolymers
			18.2.1 Cellulose
			18.2.2 Starch
			18.2.3 Chitin and Chitosan
			18.2.4 Carrageenan
			18.2.5 Alginate
			18.2.6 Other Important Polysaccharides
		18.3 Challenges in Applications
		18.4 Conclusions
		References
Part IV: Important Biotechnological Applications of Natural Products
	19: Biotechnological Aspects of Nanoparticles Driven from Natural Products for Drug Delivery System and Other Applications
		19.1 Introduction
			19.1.1 Nanoparticles from Natural Products
			19.1.2 Approaches in Selecting, Screening and Discovery of Natural Products as the Potential for Drug Discovery and Development
			19.1.3 Screening and Design
			19.1.4 Isolation and Purification
			19.1.5 Identification of Biologically Active Material
			19.1.6 Structure-Activity and Structure-Property Relationships of Natural Products
		19.2 Nanoparticles in Drug Delivery
		19.3 Other Applications of Nanoparticles
			19.3.1 Nanoparticles in Agriculture
			19.3.2 Industrial Applications of Nanoparticles
			19.3.3 Nanoparticles in Food Industry
			19.3.4 Nanoparticles in Cosmetics
			19.3.5 Nanoparticles in Textiles
				19.3.5.1 Development of Nanofibres
				19.3.5.2 Enhancing Self-Cleaning Properties of Fabrics
				19.3.5.3 UV Blocking/Protection
				19.3.5.4 Antibacterial and Wrinkle-Resistant Mechanism
				19.3.5.5 Anti-static Property and Water-Repelling Properties of Fibres
		19.4 Challenges and Nanotoxicity
		19.5 Future Perspective and Challenges in the Natural Product Drug Discovery
		19.6 Conclusion
		References
	20: Methods and Techniques for the Chemical Profiling and Quality Control of Natural Products and Natural Product-Derived Drugs
		20.1 Introduction
		20.2 Natural Product-Based Drug Discovery
		20.3 Physicochemical Analysis of Natural Products and Natural Product-Derived Drugs
		20.4 Phytochemical Analysis of Natural Products and Natural Product-Derived Drugs
		20.5 Quantitative Analysis to Characterize the Phytochemicals of Natural Products and Natural Product-Derived Drugs
		20.6 High-Performance Thin-Layer Chromatography
		20.7 UV-Visible Spectroscopy
		20.8 Infrared Spectroscopy
		20.9 Nuclear Magnetic Resonance Spectroscopy (NMR)
		20.10 Mass Spectrometry
		20.11 Need of Analogue Synthesis of Natural Products
		20.12 Conclusion and Future Prospects
		References
	21: Characterization of Bioactive Secondary Metabolites of Fungal Endophytes from Melghat Forest in Maharashtra, India
		21.1 Introduction
		21.2 Materials and Methods
			21.2.1 Collection of Plant Samples
			21.2.2 Isolation of Endophytic Fungi
			21.2.3 Production of Secondary Metabolites and Solvent Extraction
			21.2.4 In Vitro Antibacterial Activity via Kirby-Bauer (KB) Disk Assay
			21.2.5 GC/MS Analysis of the EA Crude Residue
		21.3 Results
			21.3.1 Isolation of Endophytic Fungi
			21.3.2 In Vitro Antibacterial Activity via KB Disc Assay
			21.3.3 GC/MS Analysis of the EA Crude Residue
		21.4 Discussion
		21.5 Conclusion
		References
	22: Modulation of Cellular Protein Quality Control Pathways Using Small Natural Molecules
		22.1 Introduction
		22.2 Cellular Protein Quality Control Pathways: Multiple Arms Converging for a Common Goal
		22.3 Exploiting Protein Quality Control Pathways for Therapeutics Against Major Human Pathologies
		22.4 Natural Molecules as the Modulators of Cellular Proteostasis Mechanisms
			22.4.1 Small Molecules Enhancing Cellular Chaperoning Capacities
			22.4.2 Natural Modulators of Autophagic Pathway
			22.4.3 Targeting Diseases by Regulating Proteolytic Activities of the Proteasome
		22.5 Concluding Remarks and Future Perspectives
		References
	23: Elaborating on the Potential for Mushroom-Based Product Market Expansion: Consumers´ Attitudes and Purchasing Intentions
		23.1 Introduction
		23.2 The World Market of Mushroom-Based Products: The Relation of Practice and Literature
		23.3 An Overview of Mushroom-Based Products
		23.4 Potential of Medicinal Mushrooms to Be Used as a Source of Natural Products
			23.4.1 Active Chemical Compounds of Medicinal Mushrooms
			23.4.2 Mushroom Polysaccharides
			23.4.3 Commercial Mushroom-Based Products
				23.4.3.1 Krestin
				23.4.3.2 Lentinan
				23.4.3.3 Ganopoly
		23.5 Internal Factors That Shape Consumer Attitudes and Purchasing Behavior Towards Mushroom-Based Products
			23.5.1 Sociodemographic Characteristics
			23.5.2 Psychographic and Behavioral Characteristics
		23.6 External Factors That Shape Consumer Attitudes and Purchasing Behavior Towards Mushroom-Based Products
		23.7 Rising the Market Potential for Mushroom-Based Products
		23.8 Conclusion
		References
	24: The Role of Algae in Nutraceutical and Pharmaceutical Production
		24.1 Introduction
		24.2 Growth Environment of Algae
		24.3 High-Value Products from Algae
			24.3.1 Role of Algae in Nutraceuticals
				24.3.1.1 Vitamins
				24.3.1.2 Fatty Acids
				24.3.1.3 Polyunsaturated Fatty Acids (PUFA)
					Docosahexaenoic Acid (DHA)
					Eicosapentaenoic Acids (EPA)
					Arachidonic Acid (AA)
				24.3.1.4 Carotenoids
				24.3.1.5 Sterols
				24.3.1.6 Proteins and Enzymes
			24.3.2 Role of Algae in Pharmaceuticals
		24.4 Bioactivity of Compounds from Algae
			24.4.1 Antioxidant Activity
			24.4.2 Antiangiogenic, Cytotoxic, and Anticancer Activities
			24.4.3 Antiobesity Activity
			24.4.4 Antimicrobial Activity
			24.4.5 Antiprotozoal Activity
		24.5 Market Potential of Algal Products
		24.6 Future of Natural Products from Algae
		References
	25: Microbial Interventions to Induce Secondary Metabolite Biosynthesis in Medicinal and Aromatic Plants
		25.1 Introduction
		25.2 Secondary Metabolites
			25.2.1 Terpenoids
			25.2.2 Alkaloids
			25.2.3 Benzylisoquinoline Alkaloids
			25.2.4 Bisbenzylisoquinoline Alkaloids
		25.3 Biosynthetic Pathways in MAPs
			25.3.1 The Polyketide Pathway
			25.3.2 Mevalonate and Deoxyxylulose-5-Phosphate Pathways for Synthesis of Terpene
			25.3.3 Shikimate Pathway
			25.3.4 Polyamine Pathway
			25.3.5 Mixed Biosynthetic Pathways
		25.4 Basic Outline and Variety of Bioactive Molecules
		25.5 Plant Growth-Promoting Microorganisms (PGPMs)
		25.6 Mechanisms of PGPM-Induced Secondary Metabolite Synthesis in MAPs
		25.7 Conclusion and Future Perspectives
		References
	26: Peptaibols: Antimicrobial Peptides from Fungi
		26.1 Introduction
		26.2 Early Discovery and Naming
		26.3 Characteristics of Peptaibols
		26.4 Chain Length and Residue Types
		26.5 Classification of Peptaibols
		26.6 Biosynthesis of Peptaibols
			26.6.1 Initiation or Adenylation
			26.6.2 Elongation or Thiolation
			26.6.3 Termination
		26.7 Detection of Peptaibols Using Modern Techniques
		26.8 Structure of Peptaibols
		26.9 Mode of Action
		26.10 Bioinformatics and Synthetic Peptides
		26.11 Applications and Functions of Peptaibols
		26.12 Conclusion
		References
Index




نظرات کاربران