ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Bio: and Bioinspired Nanomaterials

دانلود کتاب زیستی: و نانومواد الهام گرفته از زیستی

Bio: and Bioinspired Nanomaterials

مشخصات کتاب

Bio: and Bioinspired Nanomaterials

ویرایش:  
نویسندگان: , ,   
سری:  
 
ناشر: Wiley 
سال نشر: 2014 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 15 مگابایت 

قیمت کتاب (تومان) : 39,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Bio: and Bioinspired Nanomaterials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب زیستی: و نانومواد الهام گرفته از زیستی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface XVII    List of Contributors XXI    Part I Polymer Surfaces 1    1 Proteins for Surface Structuring 3  Alexander Schulz, Stephanie Hiltl, Patrick van Rijn, and Alexander Boker    1.1 Introduction 3    1.2 Structuring and Modification of Interfaces by Self-Assembling Proteins 3    1.3 Structuring and Modification of Solid Surfaces via Printing of Biomolecules 11    1.4 Conclusion and Outlook 22    References 22    2 Surface-Grafted Polymer Brushes 27  Szczepan Zapotoczny    2.1 Introduction 27    2.2 Synthesis of Polymer Brushes 28    2.3 Stimuli-Responsive Polymer Brushes 30    2.4 Polyelectrolyte Brushes 33    2.5 Bio-Functionalized Polymer Brushes 35    Acknowledgment 37    References 37    3 Inhibiting Nonspecific Protein Adsorption: Mechanisms, Methods, and Materials 45  Mojtaba Binazadeh, Hongbo Zeng, and Larry D. Unsworth    3.1 Introduction 45    3.2 Underlying Forces Responsible for Nonspecific Protein Adsorption 46    3.3 Poly(Ethylene Glycol) 48    3.4 Surface Forces Apparatus (SFA) 50    3.5 Applications of Poly(Ethylene Glycol) 53    Summary 55    References 55    4 Stimuli-Responsive Surfaces for Biomedical Applications 63  Rui R. Costa, Natalia M. Alves, J. Carlos Rodryguez-Cabello, and Joao F. Mano    4.1 Introduction 63    4.2 Surface Modification Methodologies: How to Render Substrates with Stimuli Responsiveness 64    4.3 Exploitable Stimuli and Model Smart Biomaterials 69    4.4 Biomedical Applications of Smart Surfaces 75    4.5 Conclusions 79    Acknowledgments 79    References 80    5 Surface Modification of Polymeric Biomaterials 89  Aysun Guney, Filiz Kara, Ozge Ozgen, Eda Ayse Aksoy, Vasif Hasirci, and Nesrin Hasirci    5.1 Introduction 89    5.2 Effect of Material Surfaces on Interactions with Biological Entities 90    5.3 Surface Morphology of Polymeric Biomaterials 96    5.4 Surface Modifications to Improve Biocompatibility of Biomaterials 118    5.5 Surface Modifications to Improve Hemocompatibility of Biomaterials 126    5.6 Surface Modifications to Improve Antibacterial Properties of Biomaterials 134    5.7 Nanoparticles 142    References 143    6 Polymer Vesicles on Surfaces 159  Agnieszka Jagoda, Justyna Kowal, Mihaela Delcea, Cornelia G. Palivan, and Wolfgang Meier    6.1 Introduction 159    6.2 Polymer Vesicles 160    6.3 Applications of Polymer Membranes and Vesicles as Smart and Active Surfaces 180    6.4 Current Limitations of Polymer Vesicles and Emerging Trends 187    6.5 Conclusions 190    Abbreviations and Symbols 191    References 193    Part II Hydrogel Surfaces 205    7 Protein-Engineered Hydrogels 207  Jordan Raphel, Andreina Parisi-Amon, and Sarah C. Heilshorn    7.1 Introduction to Protein Engineering for Materials Design 207    7.2 History and Development of Protein-Engineered Materials 207    7.3 Modular Design and Recombinant Synthesis Strategy 210    7.4 Processing Protein-Engineered Materials 216    7.5 Conclusion 228    References 229    8 Bioactive and Smart Hydrogel Surfaces 239  J. Carlos Rodr'yguez-Cabello, A. Fernandez-Colino, M.J. Pina, M. Alonso, M. Santos, and A.M. Testera    8.1 Introduction 239    8.2 Mimicking the Extracellular Matrix 240    8.3 Hydrogels: Why Are They So Special? 245    8.4 Elastin-Like Recombinamers as Bioinspired Proteins 255    8.5 Perspectives 261    Acknowledgments 261    References 261    9 Bioresponsive Surfaces and Stem Cell Niches 269  Miguel Angel Mateos-Timoneda, Melba Navarro, and Josep Anton Planell    9.1 General Introduction 269    9.2 Stem Cell Niches 271    9.3 Surfaces as Stem Cell Niches 274    9.4 Conclusions 279    References 279    Part III Hybrid & Inorganic Surfaces 285    10 Micro- and Nanopatterning of Biomaterial Surfaces 287  Daniel Brodoceanu and Tobias Kraus    10.1 Introduction 287    10.2 Photolithography 287    10.3 Electron Beam Lithography 290    10.4 Focused Ion Beam 292    10.5 Soft Lithography 292    10.6 Dip-Pen Nanolithography 294    10.7 Nanoimprint Lithography 295    10.8 Sandblasting and Acid Etching 298    10.9 Laser-Induced Surface Patterning 298    10.10 Colloidal Lithography 301    10.11 Conclusions and Perspectives 303    Acknowledgments 305    References 306    11 Organic/Inorganic Hybrid Surfaces 311  Tobias Mai, Katrin Bleek, and Andreas Taubert    11.1 Introduction 311    11.2 Calcium Carbonate Surfaces and Interfaces 314    11.3 Calcium Phosphate Surfaces and Interfaces 319    11.4 Silica Surfaces and Interfaces 326    11.5 Conclusion and Outlook 327    Acknowledgments 328    References 328    12 Bioactive Ceramic and Metallic Surfaces for Bone Engineering 337  Carlos Mas-Moruno, Montserrat Espanol, Edgar B. Montufar, Gemma Mestres, Conrado Aparicio, Francisco Javier Gil, and Maria-Pau Ginebra    12.1 Introduction 337    12.2 Ceramics for Bone Replacement and Regeneration 338    12.3 Metallic Surfaces for Bone Replacement and Regeneration 346    12.4 Conclusions 364    References 365    13 Plasma-Assisted Surface Treatments and Modifications for Biomedical Applications 375  Sanjay Mathur, Trilok Singh, Mahboubeh Maleki, and Thomas Fischer    13.1 Introduction 375    13.2 Surface Requisites for Biomedical Applications 377    13.3 Surface Functionalization of Inorganic Surfaces by Plasma Techniques 383    13.4 Applications of Plasma-Modified Surfaces in Biology and Biomedicine 386    13.5 Conclusions and Outlook 401    Acknowledgments 402    References 402    14 Biological and Bioinspired Micro- and Nanostructured Adhesives 409  Longjian Xue, Martin Steinhart, and Stanislav N. Gorb    14.1 Introduction: Adhesion in Biological Systems 409    14.2 Fibrillar Contact Elements 410    14.3 Basic Physical Forces Contributing to Adhesion 414    14.4 Contact Mechanics 415    14.5 Larger Animals Rely on Finer Fibers 416    14.6 Peeling Theory 416    14.7 Artificial Adhesive Systems 419    14.8 Toward Smart Adhesives 436    Acknowledgment 436    References 437    Part IV Cell   Surface Interactions 441    15 Generic Methods of Surface Modification to Control Adhesion of Cells and Beyond 443  Marcus Niepel, Alexander Kowitsch, Yuan Yang, Ning Ma, Neha Aggarwal, Deepak Guduru, and Thomas Groth    15.1 General Introduction 443    15.2 Survey on Generic Methods to Modify Material Surfaces 444    15.3 Results and Discussion 449    15.4 Summary and Conclusions 461    Acknowledgments 462    References 462    16 Severe Deformations of Malignant Bone and Skin Cells, as well as Aged Cells, on Micropatterned Surfaces 469  Patricia M. Davidson, Tokuko Haraguchi, Takako Koujin, Thorsten Steinberg, Pascal Tomakidi, Yasushi Hiraoka, Karine Anselme, and Gunter Reiter    16.1 Introduction 469    16.2 Experimental Methods 470    16.3 The Interaction of Bone Cells with Micropillars 473    16.4 The Deformation of Skin Cells as a Function of Their Malignancy 480    16.5 The Deformation of Fibroblasts of Different Cellular Ages 481    16.6 Discussion 484    16.7 Conclusions 486    Acknowledgments 487    References 487    17 Thermoresponsive Cell Culture Surfaces Designed for Cell-Sheet-Based Tissue Engineering and Regenerative Medicine 491  Jun Kobayashi and Teruo Okano    17.1 Introduction 491    17.2 Characteristics of PIPAAm-Grafted Cell Culture Surfaces 493    17.3 Mechanisms of Cell Detachment from the Thermoresponsive Cell Culture Dish 495    17.4 Cell-Sheet-Based Tissue Engineering and Its Clinical Applications 495    17.5 Next-Generation Thermoresponsive Cell Culture Dishes 498    17.6 Conclusions 503    References 504    18 Cell Mechanics on Surfaces 511  Jessica H. Wen, Hermes Taylor-Weiner, Alexander Fuhrmann, and Adam J. Engler    18.1 Introduction 511    18.2 What Is Elasticity and Stiffness? 511    18.3 Measuring and Quantifying Stiffness 514    18.4 Controlling Substrate Stiffness 519    18.5 Naturally Derived Scaffolds 520    18.6 Synthetic Scaffolds 525    18.7 Substrate Stiffness    Impact on Cell Behavior 528    18.8 When Stiffness In vivo Goes Awry: The Impact of Fibrosis on Function 530    18.9 Novel Surface Fabrication Techniques to Improve Biomimicry 531    18.10 Conclusion 532    Acknowledgment 533    Abbreviations 533    References 533    19 Electrode   Neural Tissue Interactions: Immune Responses, Current Technologies, and Future Directions 539  Gloria Bora Kim, Pouria Fattahi, and Mohammad Reza Abidian    19.1 Introduction 539    19.2 Immune Response to Neural Implants 540    19.3 Past and Current Neural Interfaces 543    19.4 Methods for Improvement of the Electrode   Tissue Interface 548    19.5 Conclusions and Future Directions 557    References 558    Index 567




نظرات کاربران