دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Osman Khalid (editor), Samee U. Khan (editor), Albert Y. Zomaya (editor) سری: ISBN (شابک) : 9781785619779, 9781785619793 ناشر: The Institution of Engineering and Technology سال نشر: 2019 تعداد صفحات: 520 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Big Data Recommender Systems: Application Paradigms (Computing and Networks) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستمهای توصیهکننده کلان داده: پارادایمهای کاربردی (محاسبات و شبکهها) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیستمهای توصیهگر برای اولین بار برای ایجاد توصیههای شخصیسازی شده به کاربران در دهه ۹۰ طراحی شدند، تکنیکهای کشف دانش را در دادههای کاربران به کار میبرند تا اطلاعات، محصولات و خدماتی را پیشنهاد دهند که به بهترین وجه با ترجیحات آنها مطابقت دارد. در دهههای اخیر، شاهد افزایش تصاعدی در حجم دادهها بودهایم که چالشهای جدیدی را به وجود آورده است.
این مجموعه جامع که به دو جلد تقسیم میشود، پیشرفتهای اخیر، چالشها، راهحلهای جدید و برنامههای کاربردی را در بر میگیرد. سیستم های توصیه کننده داده های بزرگ جلد 2 طیف گسترده ای از پارادایم های کاربردی برای سیستم های توصیه گر را در 22 فصل پوشش می دهد. جلد 1 شامل 14 فصل است که به مبانی، الگوریتم ها و معماری ها، رویکردهای داده های بزرگ و اقدامات اعتماد و امنیت می پردازد.
First designed to generate personalized recommendations to users in the 90s, recommender systems apply knowledge discovery techniques to users’ data to suggest information, products, and services that best match their preferences. In recent decades, we have seen an exponential increase in the volumes of data, which has introduced many new challenges.
Divided into two volumes, this comprehensive set covers recent advances, challenges, novel solutions, and applications in big data recommender systems. Volume 2 covers a broad range of application paradigms for recommender systems over 22 chapters. Volume 1 contains 14 chapters addressing foundations, algorithms and architectures, approaches for big data, and trust and security measures.
Cover Contents Foreword 1 Introduction to big data recommender systems — volume 1 1.1 Background 1.2 About the book Acknowledgments References 2 Theoretical foundations for recommender systems 2.1 Introduction 2.1.1 Definitions of RSs 2.1.2 The need for an RS 2.2 Applications of RSs 2.2.1 Current use of RSs 2.2.1.1 Product recommendation (e-commerce) 2.2.1.2 Movie or music recommendation (entertainment) 2.2.1.3 Scholarly search and news articles 2.2.1.4 Services 2.2.2 More areas for RSs 2.2.2.1 Recommend courses for students 2.2.2.2 Perform career counselling 2.3 Algorithms and theoretical foundations of RSs 2.3.1 Phases of RSs 2.3.1.1 Information collection 2.3.1.2 Learning phase 2.3.1.3 Prediction/recommendation phase 2.3.2 Types of RSs 2.3.2.1 Content-based recommenders 2.3.2.2 CF recommenders 2.3.2.3 Hybrid recommenders 2.3.2.4 Image-based recommenders 2.3.2.5 RSs using GDBs 2.3.3 Datasets for recommendations 2.3.3.1 MovieLens 2.3.3.2 Jester 2.3.3.3 BookCrossing 2.3.3.4 Amazon product data 2.3.3.5 YahooWebscope datasets 2.4 Problems related to RSs 2.4.1 Data sparsity problem 2.4.2 Cold start problem 2.4.3 Scalability 2.4.4 Overspecialization or diversity problem 2.4.5 Vulnerable to attacks References 3 Benchmarking big data recommendation algorithms using Hadoop orApache Spark 3.1 Introduction 3.2 Big data 3.2.1 Hadoop 3.2.2 Presenting the MapReduce model 3.2.3 Hadoop input/output 3.2.4 Apache Ambari and Ambari architecture 3.2.5 Future of Hadoop 3.2.6 How Hadoop works in social networking 3.3 Apache Spark 3.4 Recommender systems 3.4.1 Design of recommender systems 3.4.2 Collaborative recommendation and collaborative filtering 3.4.3 Reducing the sparsity problem 3.4.4 Content-based recommendation 3.4.5 Visualization of recommendation 3.4.6 Hybrid recommendation approaches 3.5 Systems based on nature-inspired algorithms 3.6 Benchmarking: big data benchmarking 3.7 Summary References 4 Efficient and socio-aware recommendation approaches for bigdata networked systems 4.1 Introduction 4.2 Background on recommendation systems and social network analysis 4.2.1 Recommendation systems 4.2.2 Social network analysis 4.3 Socio-aware recommendation systems 4.3.1 Hyperbolic path-based recommendation system 4.3.2 Probabilistic graphical models 4.3.2.1 Pairwise recommendation MRFs 4.3.2.2 Preference networks 4.3.2.3 Ordinal random fields 4.3.2.4 Preference Markov random fields 4.3.3 Information diffusion-aware recommendation approaches 4.3.4 Context-based recommendations in pervasive systems 4.3.4.1 Context-aware recommendation systems 4.3.4.2 Context-aware recommendation systems in IoT ecosystem 4.3.4.3 Context-aware recommendation systems and social networks 4.4 Qualitative comparison 4.5 Open problems and conclusion References 5 Novel hybrid approaches for big data recommendations 5.1 Introduction 5.2 Context 5.3 The big data architecture 5.4 Different approaches to handle big data 5.4.1 Approaches to detect and reduce data inconsistency 5.5 Complexity and issues of big DI 5.5.1 Big data analysis and integration architecture 5.5.1.1 Combine two figures at work 5.5.1.2 Architectural patterns as development standards 5.6 Big DI using HAs based on Fuzzy-Ontology 5.7 Developing approaches for the crisp ontology 5.8 Developing HAs for Fuzzy-Ontology 5.9 Extracting the big data key business functions for the proposed HAs based on Fuzzy-Ontology 5.10 Identify the specification for the purpose HIDAs for big data 5.11 Real-world project: hypertension-specific diagnosis based on HIDAs 5.11.1 Data collection 5.11.2 Step 1: HIDAs contrivance and excellence 5.11.3 Step 2: determine and ascertain the necessity for fuzziness in hypertension diagnosis 5.11.4 Step 3: specify fuzzy-associated elements in hypertension data 5.11.5 Step 4: reusing the subsisting HIDAs resources 5.11.6 Step 5: reusing the subsisting Fuzzy-Ontology resources elements 5.11.7 Step 6: appropriate the subsisting of Fuzzy-Ontology elements 5.11.8 Step 7: identify appropriate Fuzzy-Ontology elements 5.11.9 Step 8: identify appropriate crisp ontology elements 5.11.10 Step 9: formalisation 5.11.11 Step 10: Fuzzy-Ontology result affirmation 5.11.12 Step 11: documentation and notes 5.12 Mathematical simulation of hypertension diagnosis based on Markov chain probability model 5.13 Analysis of result 5.14 Conclusion References 6 Deep generative models for recommender systems 6.1 Introduction 6.2 Generative models 6.2.1 Probabilistic matrix factorization 6.2.2 Probabilistic latent semantic analysis 6.2.3 Latent Dirichlet allocation 6.2.4 Collaborative topic models 6.3 Deep learning for recommender systems 6.3.1 Restricted Boltzmann-machine-based collaborative filtering 6.3.2 Autoencoder for recommender systems 6.3.3 Multilayer perceptron based recommender systems 6.3.4 RNN/LSTM for recommendation 6.4 Deep generative models 6.4.1 Collaborative denoising autoencoders 6.4.2 Collaborative variational autoencoder 6.5 Summary References 7 Recommendation algorithms for unstructured big data such as text, audio, image and video 7.1 Recommender methods 7.1.1 Content-based recommendations 7.1.2 Collaborative recommendations 7.1.3 Knowledge-based recommendations 7.1.4 Demographic recommendations 7.1.5 Hybrid recommendations 7.2 Big data analytic 7.2.1 Text analytics 7.2.1.1 Steps for text analytics system 7.2.1.2 Text recommendation using an angle-based interest model 7.2.2 Audio analytics 7.2.2.1 Prediction of genre-based link in a two-way graph for music recommendation 7.2.2.2 Personalized tag-based social media music recommendation 7.2.2.3 Graph-based quality model for music recommendation 7.2.2.4 Music recommendation using acoustic features and user access patterns 7.2.2.5 Learning content similarity for music recommendation 7.2.3 Video analytics 7.2.3.1 Real-time video-recommendation system 7.2.3.2 Recommendation system for micro-video on big data 7.2.4 Image analytics 7.2.4.1 An images-textual hybrid recommendation system 7.2.4.2 Recommendation system for styles and substitutes based on image 7.2.5 Other recommender system 7.2.5.1 Personalized trip advisor service 7.2.5.2 Recommendation system with Hadoop Framework on big data 7.3 Recommender systems: challenges and limitations 7.4 Summary References 8 Deep segregation of plastic (DSP): segregation of plastic and nonplastic using deep learning 8.1 Introduction 8.2 Related work 8.3 Deep learning 8.4 Scalable architecture 8.5 Software framework 8.6 Software and packages 8.6.1 TensorFlow 8.6.2 Keras 8.6.3 OpenCV 8.7 Hardware components used 8.7.1 Arduino UNO 8.7.2 Windshield wiper motor 8.7.3 Stepper motor 8.7.4 Switching power supply 8.7.5 ULN 2003 8.7.6 Webcam 8.8 Hardware setup for segregation 8.9 Experiments and observation 8.9.1 Training process 8.10 Conclusion and future work AppendixA Appendix B Acknowledgments References 9 Spatiotemporal recommendation with big geo-social networking data 9.1 Introduction 9.2 Preliminaries about SAGE 9.3 Spatial – temporal SAGE model 9.3.1 Problem definitions 9.3.2 Model description 9.3.3 Model inference 9.3.4 Spatial smoothing 9.3.5 Parallel implementation 9.4 Spatial item recommendation using ST-SAGE 9.5 Experiments 9.5.1 Experimental settings 9.5.1.1 Datasets 9.5.1.2 Comparative approaches 9.5.1.3 Evaluation methods 9.5.2 Recommendation effectiveness 9.5.2.1 Results and analysis 9.5.2.2 Impact of different factors 9.5.3 Recommendation efficiency 9.5.3.1 Model training efficiency 9.5.3.2 Online recommendation efficiency 9.6 Related work 9.7 Conclusion References 10 Recommender system for predicting malicious Android applications 10.1 Background 10.1.1 Android operating system architecture 10.1.1.1 Applications 10.1.1.2 Application framework 10.1.1.3 Android runtime 10.1.1.4 Libraries 10.1.1.5 Kernel 10.1.2 Android application structure 10.1.3 Application threats 10.2 The proposed recommender system for mobile application risk reduction 10.2.1 Preprocessing 10.2.2 Emulation and testing 10.2.3 Features extraction 10.2.4 Machine learning 10.2.5 Dataset 10.3 Conclusion References 11 Security threats and their mitigation in big data recommender systems 11.1 Introduction 11.2 Security issues and approaches in HDFS architecture 11.2.1 Security issues in HDFS 11.2.2 HDFS security methods 11.2.2.1 Kerberos construction 11.2.2.2 Bull Eye algorithm 11.2.2.3 Name node algorithm 11.3 Big data recommender system attacks 11.3.1 Attack tactics 11.3.2 Probe attack strategy 11.3.3 Ratings strategy 11.3.4 Dimensions of attacks 11.3.5 Models of attacks 11.3.5.1 Profile injection attacks 11.3.5.2 Push attacks 11.3.5.3 Nuke attacks 11.4 Recommender algorithms 11.4.1 Association rule mining 11.4.2 Base algorithms 11.4.3 k-Nearest neighbor 11.4.4 k-Means clustering 11.4.5 Probabilistic latent semantic analysis 11.4.6 Recommender algorithms and evaluation metrics 11.4.6.1 User-based collaborative filtering 11.4.6.2 Item-based collaborative filtering 11.4.6.3 Enhanced collaborative filtering 11.4.7 Profile classification 11.5 Attack response and system robustness 11.5.1 Classification of attributes 11.5.1.1 Generic attributes 11.5.1.2 Model-derived attributes 11.5.2 Enhanced hybrid collaborative recommender systems 11.5.2.1 Hybrid recommendation algorithm 11.5.2.2 Push attacks against enhanced hybrid algorithm 11.5.3 Defense against profile injection attacks 11.5.3.1 Detection methods 11.5.3.2 Detection attributes for profile classification 11.6 Conclusion References 12 User\'s privacy in recommendation systems applying online social network data: a survey and taxonomy 12.1 Introduction 12.2 Recommender systems and techniques: privacy of online social network data 12.2.1 Privacy: definition 12.2.2 Online social networks, classification, and privacy 12.3 Taxonomy of privacy 12.3.1 Privacy concerns in social networks 12.3.2 User-specific privacy risks and invasion 12.3.3 Measuring privacy in online social networks 12.3.3.1 Dichotomous approach 12.3.3.2 Polytomous approach 12.3.4 Privacy-preserving approaches 12.3.5 Privacy-preserving models 12.3.5.1 k-Anonymity 12.3.5.2 l-Diversity 12.3.5.3 T-Closeness 12.3.5.4 Differential privacy 12.4 Privacy preservation in recommender systems 12.5 Conclusion and future directions References 13 Private entity resolution for big data on Apache Spark using multiple phonetic codes 13.1 Introduction 13.2 Related work 13.3 Problem formulation and background 13.3.1 Problem formulation and notation used 13.3.2 Phonetic algorithms for privacy preserving matching 13.3.3 The Soundex algorithm 13.3.4 The NYSIIS algorithm 13.3.5 Apache Spark 13.4 A parallel privacy preserving phonetics matching protocol 13.4.1 Multiple algorithms for phonetic matching 13.4.2 Protocol operation 13.4.3 Privacy discussion 13.5 Empirical evaluation 13.5.1 Experimental setup 13.5.2 Experimental results 13.5.2.1 Algorithm combination selection 13.5.2.2 Matching accuracy 13.5.2.3 Time performance 13.6 Conclusions and future work References 14 Deep learning architecture for big data analytics in detecting intrusions and malicious URL 14.1 Introduction 14.2 Related works 14.2.1 Network intrusion detection systems (NIDSs) 14.2.2 Related works on phishing URL detection 14.3 Background 14.3.1 Deep neural network 14.3.2 Recurrent neural network 14.3.3 Convolutional neural network 14.4 Intrusion detection 14.4.1 Description of KDD-Cup-99 data set 14.4.2 Description of Kyoto network intrusion detection (ID) data set 14.4.3 Experiments on KDD-Cup-99 14.4.4 Proposed architecture for KDD-Cup-99 data set 14.4.5 Experiments on Kyoto network intrusion detection (ID) data set 14.4.6 Proposed architecture for Kyoto 14.4.7 Evaluation results for KDD-Cup-99 14.4.8 Evaluation results for Kyoto 14.5 Intrusion detection (ID) using multidimensional zoom (M-ZOOM) framework 14.5.1 Density measures 14.5.2 Problem formulation 14.5.3 Data set description 14.5.4 Experiments and observations 14.6 Phishing URL detection 14.6.1 Data set description of phishing URL detection 14.6.2 URL representation 14.6.3 Experiments 14.6.4 Hyper-parameter tuning 14.6.5 Proposed architecture for URL analysis 14.7 Proposed architecture for machine learning based cybersecurity 14.8 Conclusion and future work Acknowledgments References Index Back Cover