دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2021]
نویسندگان: Florin Pop (editor). Gabriel Neagu (editor)
سری:
ISBN (شابک) : 3030388352, 9783030388355
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 307
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 36 Mb
در صورت تبدیل فایل کتاب Big Data Platforms and Applications: Case Studies, Methods, Techniques, and Performance Evaluation (Computer Communications and Networks) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بسترها و کاربردهای کلان داده: مطالعات موردی، روشها، تکنیکها و ارزیابی عملکرد (ارتباطات رایانهای و شبکهها) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مروری بر موضوعات پیشرفته مربوط به تئوری، تحقیق، تجزیه و تحلیل و پیاده سازی در زمینه پلتفرم های کلان داده و کاربردهای آنها با تمرکز بر روش ها، تکنیک ها و ارزیابی عملکرد ارائه می دهد. رشد انفجاری در حجم، سرعت و تنوع دادههایی که هر روز تولید میشوند، مستلزم افزایش مداوم سرعت پردازش سرورها و کل زیرساختهای شبکه و همچنین مدلهای جدید مدیریت منابع است. این چالشهای مهمی (و فرصتهای توسعه چشمگیر) را برای محاسبات فشرده و با کارایی بالا ایجاد میکند، به عنوان مثال، چگونگی تبدیل کارآمد مجموعه دادههای بسیار بزرگ به اطلاعات ارزشمند و دانش معنادار. وظیفه مدیریت داده های متنی به دلیل تنوع منابعی که این داده ها از آنها مشتق می شوند، پیچیده تر می شود، که منجر به فرمت های مختلف داده، با نیازهای مختلف ذخیره سازی، تبدیل، تحویل و بایگانی می شود. در عین حال پاسخ های سریع برای برنامه های کاربردی بلادرنگ مورد نیاز است. با ظهور زیرساختهای ابری، دستیابی به مدیریت داده بسیار مقیاسپذیر در چنین زمینههایی یک مشکل حیاتی است، زیرا عملکرد کلی برنامه به شدت به ویژگیهای سرویس مدیریت داده وابسته است.
This book provides a review of advanced topics relating to the theory, research, analysis and implementation in the context of big data platforms and their applications, with a focus on methods, techniques, and performance evaluation. The explosive growth in the volume, speed, and variety of data being produced every day requires a continuous increase in the processing speeds of servers and of entire network infrastructures, as well as new resource management models. This poses significant challenges (and provides striking development opportunities) for data intensive and high-performance computing, i.e., how to efficiently turn extremely large datasets into valuable information and meaningful knowledge. The task of context data management is further complicated by the variety of sources such data derives from, resulting in different data formats, with varying storage, transformation, delivery, and archiving requirements. At the same time rapid responses are needed for real-time applications. With the emergence of cloud infrastructures, achieving highly scalable data management in such contexts is a critical problem, as the overall application performance is highly dependent on the properties of the data management service.
Preface Acknowledgments Contents About the Editors 1 Data Center for Smart Cities: Energy and Sustainability Issue 1.1 Introduction 1.2 State-of-The-Art Overview 1.3 Methodology 1.3.1 Data Center Facilities and Dataset Description 1.3.2 Data Analysis 1.3.3 Metrics 1.3.4 Energy Waste Analysis 1.4 Results: DC Cluster Energy Consumption 1.4.1 Energy Use by Applications 1.4.2 Energy Analysis of Queues of Jobs 1.4.3 Energy Use by Parallel and Serial Jobs 1.4.4 Assessment of Useful Work 1.4.5 Assessment of Energy Waste 1.4.6 Sustainability Analysis 1.5 Discussion 1.5.1 Energy Efficiency Benefits and Concerns of Jobs Execution in Parallel Mode 1.5.2 Data Center Energy Efficiency Policies and Strategies 1.5.3 Sustainability-Oriented DC 1.6 Conclusion References 2 Apache Spark for Digitalization, Analysis and Optimization of Discrete Manufacturing Processes 2.1 Introduction 2.2 Background 2.2.1 IoT for Smart Manufacturing Processes 2.2.2 Machine Learning Approaches for Manufacturing Process Analysis 2.2.3 Manufacturing Processes Optimization Literature Approaches 2.2.4 Bio-Inspired Techniques for Tuning the Parameters of Machine Learning Models 2.2.5 Approaches Used in Our Research for the Analysis of the Faults in Manufacturing Processes 2.3 Materials and Methods 2.3.1 Architectural Prototype for Simulating the Manufacturing of FL Series Regulators 2.3.2 Machine Learning Methodology for Detecting Faulty Products in Discrete Manufacturing Processes 2.3.3 Data Preprocessing in KNIME (Konstanz Information Miner) 2.3.4 Discrete Manufacturing Processes Optimization Based on Big Data Technologies 2.4 Results 2.4.1 Description of the Datasets Used in Experiments 2.4.2 Classification Results 2.5 Discussion 2.6 Conclusions References 3 An Empirical Study on Teleworking Among Slovakia’s Office-Based Academics 3.1 Introduction 3.2 Methodology 3.3 Meaning of Telecommuting or Teleworking 3.3.1 Teleworking in Slovakia 3.4 Office-Based Teleworking Results 3.5 Discussion 3.6 Conclusions References 4 Data and Systems Heterogeneity: Analysis on Data, Processing, Workload, and Infrastructure 4.1 Introduction 4.2 Data Types, Formats, and Models 4.3 Processing Models and Platforms 4.4 Workload Types 4.5 Infrastructure Types 4.6 Conclusion References 5 exhiSTORY: Smart Self-organizing Exhibits 5.1 Introduction 5.2 The Stories Told by Exhibits 5.3 The Smart Exhibit 5.3.1 Centralized System Control 5.3.2 Automated Exhibit Geolocation 5.3.3 Security Aspects 5.3.4 Selecting an Implementation Option for Smart Exhibits 5.4 System Architecture 5.4.1 The Smart Space 5.4.2 The Knowledge Base 5.4.3 The Intelligent Modules 5.5 The exhiSTORY System in Operation 5.6 Discussion and Conclusions References 6 IoT Cloud Security Design Patterns 6.1 Introduction 6.2 Design of IoT Architecture Layers 6.2.1 Security Aspects 6.3 IoT Network Design Patterns 6.3.1 Security of IoT Networks 6.3.2 Design Patterns for a Secure IoT Network 6.4 IoT Cloud Platform Design Patterns 6.4.1 Security Division Pattern 6.4.2 Digital Twin Pattern 6.4.3 Secure Design Through Microservices 6.4.4 Push Notification Pattern 6.4.5 Cloud and Smartphone Management Pattern 6.4.6 Cloud-Assisted Network Access Pattern 6.5 Discussion and Conclusion References 7 Cloud-Based mHealth Streaming IoT Processing 7.1 Introduction 7.2 Overview of Underlying Technology for mHealth Solutions 7.3 Overview of IoT mHealth Solutions 7.4 Cloud-Based Architectures 7.5 Issues for Streaming mHealth IoT Solutions 7.6 Architectures for Streaming mHealth IoT Solutions 7.7 Discusion 7.7.1 Comparison of Architectural Concepts 7.7.2 Benefits 7.7.3 Use Case: A Monitoring Center Based on Streaming IoT mHealth Solutions 7.8 Conclusion References 8 A System for Monitoring Water Quality Parameters in Rivers. Challenges and Solutions 8.1 Introduction 8.2 Water Quality Monitoring Systems Challenges 8.2.1 Water Quality Parameters Acquisition Using WSNs 8.2.2 Pollution Detection 8.2.3 Standards for Hydrographic and Monitoring Data 8.3 A Service-Based System Architecture for Water Quality Monitoring 8.3.1 Data Sources 8.3.2 Data Storage, Processing and Data Provision Services 8.3.3 Information Services 8.4 A Pollution Detection System for Somes River 8.4.1 Data Acquisitions and Storage 8.4.2 Discharge Computation 8.4.3 The Rule-Based Automatic Assessment of Water Quality and Pollution Alert Service 8.4.4 Simulation of Pollutant Propagation 8.4.5 The Water Quality Information Web Application 8.5 Conclusions References 9 A Survey on Privacy Enhancements for Massively Scalable Storage Systems in Public Cloud Environments 9.1 Introduction 9.2 Cloud Storage Encryption Prerequisites 9.3 Scalable Cloud Storage Encryption Schemes 9.4 Technology Survey Regarding Service Providers 9.5 Technology Survey Regarding Classic and Emerging Cryptographic Primitives 9.5.1 Confidentiality Primitives 9.5.2 Integrity Primitives 9.6 Technology Survey Regarding Third-Party Applications 9.6.1 Viivo 9.6.2 AES Crypt 9.7 Proposed Solution 9.7.1 Architecture 9.7.2 General Description 9.7.3 The Java Card Applet 9.7.4 Storage Layout and Data Structures References 10 Energy Efficiency of Arduino Sensors Platform Based on Mobile-Cloud: A Bicycle Lights Use-Case 10.1 Introduction 10.2 Mobile Cloud Computing 10.3 The System for Energy Efficiency of Arduino Sensors 10.4 Smart Bicycle Lighting Architecture 10.5 Conclusions References 11 Cloud-Enabled Modeling of Sensor Networks in Educational Settings 11.1 Introduction 11.2 Related Work 11.2.1 Sensor Cloud 11.2.2 Education Cloud 11.3 Sensor Network Modeling 11.3.1 Language and Tools 11.3.2 Extensions and Model Interpreters 11.4 System Architecture 11.5 Educational Service in Cloud 11.5.1 Service Request and Handling 11.5.2 The Provisioning Process 11.6 Experimental Results 11.7 Conclusion References 12 Methods and Techniques for Automatic Identification System Data Reduction 12.1 Introduction 12.2 Related Work 12.3 AIS Technology 12.4 Algorithm Analysis 12.4.1 Analyzing the Data Set 12.5 Experimental Evaluation 12.5.1 Analyzed Data 12.5.2 Data Reduction Applied on AIS Data Set 12.5.3 Data Visualization 12.6 Conclusion and Future Work References 13 Machine-to-Machine Model for Water Resource Sharing in Smart Cities 13.1 Introduction 13.2 Current Stage of Development in the Field 13.2.1 EOMORES Project—Copernicus Platform 13.2.2 AquaWatch Project 13.2.3 SmartWater4Europe Project 13.2.4 OPC UA with MEGA Model Architecture 13.2.5 WATER-M Project 13.3 Smart City Water Management Available Technologies 13.3.1 GIS (Geographic Information System) 13.3.2 IBM Water Management Platform 13.3.3 TEMBOO Platform—IoT Applications 13.3.4 RoboMQ 13.4 Proposed Model and Possible Directions 13.5 Possibilities of Implementation 13.5.1 Message-Oriented Middleware—RabbitMQ 13.6 Conclusions References Index