دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Xiong. Momiao
سری: Chapman and Hall/CRC mathematical & computational biology series
ISBN (شابک) : 9781351172622, 1351172638
ناشر: CRC Press
سال نشر: 2018
تعداد صفحات: 767
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 24 مگابایت
کلمات کلیدی مربوط به کتاب داده های بزرگ در omics و تصویربرداری. تحلیل تلفیقی و استنتاج علی: بیومتری -- پردازش داده ها، سیستم های تصویربرداری در زیست شناسی -- روش های آماری، داده های بزرگ -- روش های آماری، سلامت و تناسب اندام / کل نگر، سلامت و تناسب اندام / مرجع، پزشکی / جایگزین، پزشکی / اطلس، پزشکی / مقاله، پزشکی / خانواده و عمل عمومی، پزشکی / کل نگر، پزشکی / استئوپاتی، بیوانفورماتیک، STATSnetBASE، SCI-TECHnetBASE، COMPUTERSCIENCEnetBASE، BIOMEDICALSCIENCEnetBASE، INFORMATIONSCIENCEnetBASE، STMnetBASE
در صورت تبدیل فایل کتاب Big data in omics and imaging. Integrated analysis and causal inference به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب داده های بزرگ در omics و تصویربرداری. تحلیل تلفیقی و استنتاج علی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
"Big Data in Omics and Imaging: Integrated Analysis and Causal
Inference addresses the recent development of integrated
genomic, epigenomic and imaging data analysis and causal
inference in big data era. Despite significant progress in
dissecting the genetic architecture of complex diseases by
genome-wide association studies (GWAS), genome-wide expression
studies (GWES), and epigenome-wide association studies
(EWAS), the overall
contribution of the new identified genetic variants is small
and a large fraction of genetic variants is still hidden.
Understanding the etiology and causal chain of mechanism
underlying complex diseases remains elusive. It is time to
bring big data, machine learning and causal revolution to
developing a new generation of genetic analysis for shifting
the current paradigm of genetic analysis from shallow
association analysis to deep causal inference and from genetic
analysis alone to integrated omics and imaging data analysis
for unraveling the mechanism of complex diseases. ? FEATURES
Provides a natural extension and companion volume to Big Data
in Omic and Imaging: Association Analysis, but can be read
independently. Introduce causal inference theory to genomic,
epigenomic and imaging data analysis Develop novel statistics
for genome-wide causation studies and epigenome-wide causation
studies. Bridge the gap between the traditional association
analysis and modern causation analysis Use combinatorial
optimization methods and various causal models as a general
framework for inferring multilevel omic and image causal
networks Present statistical methods and computational
algorithms for searching causal paths from genetic variant to
disease Develop causal machine learning methods integrating
causal inference and machine learning Develop statistics for
testing significant difference in directed edge, path, and
graphs, and for assessing causal relationships between two
networks ? The book is designed for graduate students and
researchers in genomics, epigenomics, medical image,
bioinformatics, and data science. Topics covered are:
mathematical formulation of causal inference, information
geometry for causal inference, topology group and Haar measure,
additive noise models, distance correlation, multivariate
causal inference and causal networks, dynamic causal networks,
multivariate and functional structural equation models, mixed
structural equation models, causal inference with confounders,
integer programming, deep learning and differential equations
for wearable computing, genetic analysis of function-valued
traits, RNA-seq data analysis, causal networks for genetic
methylation analysis, gene expression and methylation
deconvolution, cell -specific causal networks, deep learning
for image segmentation and image analysis, imaging and genomic
data analysis, integrated multilevel causal genomic, epigenomic
and imaging data analysis."-- Read
more...
Abstract: "Big Data in Omics and Imaging: Integrated Analysis
and Causal Inference addresses the recent development of
integrated genomic, epigenomic and imaging data analysis and
causal inference in big data era. Despite significant progress
in dissecting the genetic architecture of complex diseases by
genome-wide association studies (GWAS), genome-wide expression
studies (GWES), and epigenome-wide association studies (EWAS),
the overall contribution of the new identified genetic variants
is small and a large fraction of genetic variants is still
hidden. Understanding the etiology and causal chain of
mechanism underlying complex diseases remains elusive. It is
time to bring big data, machine learning and causal revolution
to developing a new generation of genetic analysis for shifting
the current paradigm of genetic analysis from shallow
association analysis to deep causal inference and from genetic
analysis alone to integrated omics and imaging data analysis
for unraveling the mechanism of complex diseases. ? FEATURES
Provides a natural extension and companion volume to Big Data
in Omic and Imaging: Association Analysis, but can be read
independently. Introduce causal inference theory to genomic,
epigenomic and imaging data analysis Develop novel statistics
for genome-wide causation studies and epigenome-wide causation
studies. Bridge the gap between the traditional association
analysis and modern causation analysis Use combinatorial
optimization methods and various causal models as a general
framework for inferring multilevel omic and image causal
networks Present statistical methods and computational
algorithms for searching causal paths from genetic variant to
disease Develop causal machine learning methods integrating
causal inference and machine learning Develop statistics for
testing significant difference in directed edge, path, and
graphs, and for assessing causal relationships between two
networks ? The book is designed for graduate students and
researchers in genomics, epigenomics, medical image,
bioinformatics, and data science. Topics covered are:
mathematical formulation of causal inference, information
geometry for causal inference, topology group and Haar measure,
additive noise models, distance correlation, multivariate
causal inference and causal networks, dynamic causal networks,
multivariate and functional structural equation models, mixed
structural equation models, causal inference with confounders,
integer programming, deep learning and differential equations
for wearable computing, genetic analysis of function-valued
traits, RNA-seq data analysis, causal networks for genetic
methylation analysis, gene expression and methylation
deconvolution, cell -specific causal networks, deep learning
for image segmentation and image analysis, imaging and genomic
data analysis, integrated multilevel causal genomic, epigenomic
and imaging data analysis."
Content: Cover
Half Title
Title Page
Copyright Page
Contents
Preface
Author
Chapter 1: Genotype-Phenotype Network Analysis
1.1 Undirected Graphs for Genotype Network
1.1.1 Gaussian Graphic Model
1.1.2 Alternating Direction Method of Multipliers for Estimation of Gaussian Graphical Model
1.1.3 Coordinate Descent Algorithm and Graphical Lasso
1.1.4 Multiple Graphical Models
1.1.4.1 Edge-Based Joint Estimation of Multiple Graphical Models
1.1.4.2 Node-Based Joint Estimation of Multiple Graphical Models
1.2 Directed Graphs and Structural Equation Models for Networks 1.2.1 Directed Acyclic Graphs1.2.2 Linear Structural Equation Models
1.2.3 Estimation Methods
1.2.3.1 Maximum Likelihood (ML) Estimation
1.2.3.2 Two-Stage Least Squares Method
1.2.3.3 Three-Stage Least Squares Method
1.3 Sparse Linear Structural Equations
1.3.1 L1-Penalized Maximum Likelihood Estimation
1.3.2 L1-Penalized Two Stage Least Square Estimation
1.3.3 L1-Penalized Three-Stage Least Square Estimation
1.4 Functional Structural Equation Models for Genotype-Phenotype Networks
1.4.1 Functional Structural Equation Models 1.4.2 Group Lasso and ADMM for Parameter Estimation in the Functional Structural Equation Models1.5 Causal Calculus
1.5.1 Effect Decomposition and Estimation
1.5.2 Graphical Tools for Causal Inference in Linear SEMs
1.5.2.1 Basics
1.5.2.2 Wright's Rules of Tracing and Path Analysis
1.5.2.3 Partial Correlation, Regression, and Path Analysis
1.5.2.4 Conditional Independence and D-Separation
1.5.3 Identification and Single-Door Criterion
1.5.4 Instrument Variables
1.5.5 Total Effects and Backdoor Criterion
1.5.6 Counterfactuals and Linear SEMs
1.6 Simulations and Real Data Analysis 1.6.1 Simulations for Model Evaluation1.6.2 Application to Real Data Examples
Appendix 1.A
Appendix 1.B
Exercises
Chapter 2: Causal Analysis and Network Biology
2.1 Bayesian Networks as a General Framework for Causal Inference
2.2 Parameter Estimation and Bayesian Dirichlet Equivalent Uniform Score for Discrete Bayesian Networks
2.3 Structural Equations and Score Metrics for Continuous Causal Networks
2.3.1 Multivariate SEMs for Generating Node Core Metrics
2.3.2 Mixed SEMs for Pedigree-Based Causal Inference
2.3.2.1 Mixed SEMs 2.3.2.2 Two-Stage Estimate for the Fixed Effects in the Mixed SEMs2.3.2.3 Three-Stage Estimate for the Fixed Effects in the Mixed SEMs
2.3.2.4 The Full Information Maximum Likelihood Method
2.3.2.5 Reduced Form Representation of the Mixed SEMs
2.4 Bayesian Networks with Discrete and Continuous Variables
2.4.1 Two-Class Network Penalized Logistic Regression for Learning Hybrid Bayesian Networks
2.4.2 Multiple Network Penalized Functional Logistic Regression Models for NGS Data
2.4.3 Multi-Class Network Penalized Logistic Regression for Learning Hybrid Bayesian Networks