دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Linghe Kong (editor), Tian Huang (editor), Yongxin Zhu (editor), Shenghua Yu (editor) سری: ISBN (شابک) : 0128190841, 9780128190845 ناشر: Elsevier سال نشر: 2020 تعداد صفحات: 413 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 25 مگابایت
در صورت تبدیل فایل کتاب Big Data in Astronomy: Scientific Data Processing for Advanced Radio Telescopes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب داده های بزرگ در نجوم: پردازش داده های علمی برای تلسکوپ های رادیویی پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
داده های بزرگ در نجوم رادیویی: پردازش داده های علمی برای تلسکوپ های رادیویی پیشرفته آخرین پیشرفت های تحقیقاتی را در روش ها و تکنیک های کلان داده برای نجوم رادیویی ارائه می دهد. این کتاب با ارائه نمونه هایی از پروژه هایی مانند آرایه کیلومتر مربعی (SKA)، بزرگترین تلسکوپ رادیویی جهان که روزانه بیش از یک اگزابایت داده تولید می کند، راه حل هایی برای مقابله با چالش ها و فرصت های ارائه شده توسط رشد تصاعدی داده های نجومی ارائه می دهد. این کتاب با ارائه نتایج و تحقیقات پیشرفته، مرجعی به موقع برای پزشکان و محققانی است که در نجوم رادیویی کار می کنند و همچنین دانشجویانی که به دنبال درک اساسی از داده های بزرگ در نجوم هستند.
Big Data in Radio Astronomy: Scientific Data Processing for Advanced Radio Telescopes provides the latest research developments in big data methods and techniques for radio astronomy. Providing examples from such projects as the Square Kilometer Array (SKA), the world’s largest radio telescope that generates over an Exabyte of data every day, the book offers solutions for coping with the challenges and opportunities presented by the exponential growth of astronomical data. Presenting state-of-the-art results and research, this book is a timely reference for both practitioners and researchers working in radio astronomy, as well as students looking for a basic understanding of big data in astronomy.
Front matter Copyright Contributors Preface Acknowledgments Introduction to radio astronomy The history of astronomy Ancient astronomy Astronomy from the mid-16th century to the mid-19th century Astronomy since the mid-19th century What is radio astronomy How does radio astronomy occur The radio stars, quasars, and black holes The strongest radio source, Cygnus A, in the sky The discovery of cliff allergens and radio galaxies Nonthermal radiation Synchronous radiation Synchrotron radiation pattern Connect nonthermal radiation and cosmic rays Astrophysics of cosmic rays Discovery of quasars The radio astronomy instrument: Radio telescope Some achievements of radio astronomy Astronomical research nowadays Advanced radio telescope The square kilometer array (SKA) Fast The challenge of radio astronomy System noise Antennas and collecting area Data transmission The development tendency of radio astronomy Mid-frequency aperture arrays Entering a near future References Fundamentals of big data in radio astronomy Big data and astronomy Background of big data Definitions and features of big data Development of big data Big data in astronomy Statistical challenges in astronomy Increasing data volumes of telescopes Sloan digital sky survey Visible and infrared survey telescope for astronomy Large synoptic survey telescope Thirty meter telescope Existing methods for the value chain of big data Data generation Data acquisition Data storage Data analysis Traditional data analysis methods Big data analytic methods Architecture for big data analysis Current statistical methods for astronomical data analysis Nonparametric statistics Data smoothing Multivariate clustering and classification Nondetections and truncation Spatial point processes Platforms for big data processing Horizontal scaling platforms Vertical scaling platforms High performance computing (HPC) clusters Multicore CPU Graphics processing unit (GPU) Field programmable gate arrays (FPGA) References Preprocessing pipeline on FPGA FPGA interface for ADC ADC interleaving Bit alignment Stream deserialization FIR filtering Leakage Scalloping loss Polyphase filter Time-frequency domain transposing Real-valued FFT Demultiplexing Correlators based on FPGA FPGA-based correlator for SMA radio telescope FPGA-based correlator of ALMA radio telescope General architectures for data reduction design and implementation Software design analysis Hardware implementation hierarchy A case study of a typical compression design Workflow of data reduction based on FPGA Data communication interface Design issues in pipeline Conclusion References Real-time stream processing in radio astronomy Introduction Stream processing Heterogeneous signal processing Common architectures Ethernet interconnect High-speed Ethernet technologies TCP/IP TCP and UDP UDP datagram structure Multicast First-stage data processing Data rates Channelization Data redistribution The corner-turn problem Data backplanes Packetized Ethernet interconnect Second-stage processing Performance modeling Packet capture Kernel bypass packet capture Ring buffers CPU/GPU pipeline frameworks Disk I/O Performance tuning Discussion Future outlook Acknowledgments References Digitization, channelization, and packeting Digitization Channelization Packeting References Processing data of correlation on GPU Introduction GPU-based cross-correlator engines General processing steps of software implementation Software architecture of GPU-based implementation Applying and implementing gridding algorithm after cross-correlator Gridding algorithm application in SKA Gridding algorithm analysis Parallel implementation of gridding/degridding algorithms and analysis of experimental results after cross-correlator Time overhead analysis Parallelization implementation of gridding/degridding algorithm Performance of gridding/degridding on GPU after cross-correlator Applying and implementing deconvolution algorithm and parallel implementation after cross-correlator CLEAN algorithm Parallel implementation of CLEAN algorithm Performance of CLEAN algorithm on GPU Summary References Flux calibration for single-dish radio telescopes Basic concepts Antenna temperature System noise temperature Telescope gain and effective area System equivalent flux density Flux calibration Calibrating with SEFD Calibrating with noise diode Gain curve Processing spectral line data Example of SIGGMA data Example of FAST data Observations of a brown dwarf by Arecibo single dish Basic information and previous observations of TVLM 513 Instrument, observation, and data reduction Results May 2008 June 2009 References Imaging algorithm optimization for scale-out processing Imaging process Make a dirty image The relationship between the dirty image and the sky intensity distribution Gridding and degridding Gridding process Aliasing Degridding The choice of the gridding function in the era of big data Spheroidal function and least-misfit gridding function Tabulating the gridding function for image processing Gridding computational cost in the big data era Bayesian source discrimination An application: Bayesian source discrimination Applications to big data radio interferometry References Execution framework technology Introduction OpenCluster Fundamental model OpenCluster implementation Factory Workshop Worker Manager WorkPeice Deployment and operation Stability Hybrid resource scheduling DALiuGE DALiuGE works mode Develop Compose Select and parameterize Translate Deploy Resource mapping Drop managers Physical graph deployment Execute Drop Drop channels Drop I/O Acknowledgments References Application design for execution framework OpenCluster applications design MUSER pipeline using OpenCluster Data file format transformation Real-time imaging and monitoring Design CHILES on AWS using DALiuGE Setup Results and costs The migration of SAGECal/MPI to DALiuGe About SAGECal Code analysis Workload characterization Drop wrapping Dynamic MPI process control Process location Dataflow and graphs Coarse-grained graphs Fine-grained graphs Implementation with BashShellApp Implementation with DynlibApp Acknowledgments References Further reading Heterogeneous computing platform for backend computing tasks Introduction Computing architecture and platform Graphical processing unit GALARIO Precision Many integrated core Cell broadband engine ASIC/FPGA Algorithm benchmarking Gridding Deconvolution Clean Richardson-Lucy method MEM NNLS Sparse regularization Compressed sensing Source extraction Telescopes and applications SKA SETI MUSER Parkes observatory Radio transient detection Solar flare detection Conclusion References Further reading High-performance computing for astronomical big data Introduction Execution framework and prototype test High performance execution frameworks Parallel programming models Distributed computing frameworks Dataflow computation model DALiuGE scalabilty test on supercomputers DALiuGE prototyping test by ASTRON Hardware Environment setup Pipeline graph execution Execution results DALiuGE scalability test on Tianhe-2 supercomputer Hardware Environment setup Pipeline development and execution DALiuGE execution results Improving SKA algorithm reference library on high-performance computing platform ARL computational kernel Simple imaging pipeline Functional imaging algorithms Summary References Spark and dask performance analysis based on ARL image library Introduction Preliminaries and notations Spark Dask Genetic algorithm Pipeline use case Experiment End-to-end performance Individual step performance Task scheduling based on data processing capacity GA on task scheduling Computation topology model on task scheduling Network connection model and routing topology model Conclusion References Applications of artificial intelligence in astronomical big data Introduction Machine learning for astronomical data calibration and repair Clustering analysis algorithm for missing values: KSC PCA-based machine learning for classification of SDSS transient survey images CCD defect inspection with artificial neural network Artificial intelligence algorithms in astronomy data classification and preprocessing Morphological classification of galaxies Supervised learning method Unsupervised learning Star/galaxy classification and detection Supervised learning Unsupervised learning Spectral analysis Artificial neural network Deep learning Cosmic ray classification Forward neural networks Clustering algorithm Artificial intelligence application in astronomy data analysis Photometric redshift Multilayer perceptron and artificial neural network Bayes algorithm Convolutional neural network Flare detection Artificial neural network Support vector machine Deep learning Galaxy parameter analysis Machine learning algorithms Deep learning algorithms Periodicity analysis Artificial neural network Clustering algorithm Supervised learning for detection of dispersed radio pulses Unsupervised learning for estimating extinction Conclusion References Mapping the universe with 21cm observations The neutral hydrogen and 21cm line The physics of spin temperature The evolution of 21cm signal through cosmic history The 21cm experiments HI galaxy survey Intensity map observations The 21cm tomography experiments The 21cm global spectrum experiments Data processing Imaging and beam forming Foreground The foreground wedge Conclusion References Further reading Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z