دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: شبکه سازی: اینترنت ویرایش: نویسندگان: Muhammad Usman Shahid Khan. Samee U. Khan and Albert Y. Zomaya سری: Computing and networks ISBN (شابک) : 9781785616365, 1785616366 ناشر: The Institution of Engineering and Technology سال نشر: 2019 تعداد صفحات: 492 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 21 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Big Data-Enabled Internet of Things به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اینترنت اشیا با داده های بزرگ نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
حوزه های کلان داده و اینترنت اشیا (IoT) در سال های اخیر شاهد پیشرفت ها، پیشرفت ها و رشد فوق العاده ای بوده اند. اینترنت اشیا شبکهای بین دستگاههای هوشمند متصل، ساختمانها، وسایل نقلیه و موارد دیگر است که با الکترونیک، نرمافزار، حسگرها و محرکها و اتصال شبکه تعبیه شدهاند که این اشیاء را قادر میسازد تا دادهها را جمعآوری و مبادله کنند. اینترنت اشیا داده های زیادی تولید می کند. کلان داده مجموعه داده های بسیار بزرگ و پیچیده ای را توصیف می کند که نرم افزار کاربردی پردازش داده سنتی برای مقابله با آنها ناکافی است و استفاده از روش های تحلیلی برای استخراج ارزش از داده ها. این کتاب ویرایش شده، تکنیکهای تحلیلی برای مدیریت حجم عظیمی از دادههای تولید شده توسط اینترنت اشیا، از معماریها و پلتفرمها گرفته تا مسائل امنیتی و حریم خصوصی، برنامهها، و چالشها و همچنین جهتگیریهای آینده را پوشش میدهد.
The fields of Big Data and the Internet of Things (IoT) have seen tremendous advances, developments, and growth in recent years. The IoT is the inter-networking of connected smart devices, buildings, vehicles and other items which are embedded with electronics, software, sensors and actuators, and network connectivity that enable these objects to collect and exchange data. The IoT produces a lot of data. Big data describes very large and complex data sets that traditional data processing application software is inadequate to deal with, and the use of analytical methods to extract value from data. This edited book covers analytical techniques for handling the huge amount of data generated by the Internet of Things, from architectures and platforms to security and privacy issues, applications, and challenges as well as future directions.
Cover Contents Dedication Foreword About the editors 1 Introduction to big data-enabled Internet of Things 1.1 Introduction 1.1.1 Internet of Things 1.1.2 Big data-enabled IoT 1.2 Platforms for big data-enabled IoT 1.2.1 Cloud computing 1.2.2 Fog computing 1.2.3 Edge computing 1.2.4 MapReduce platforms 1.2.5 Columnar database 1.3 Applications of big data-enabled IoT 1.3.1 Traffic applications 1.3.2 Wearable IoT applications in health care 1.3.3 Smart homes 1.3.4 Smart cars 1.3.5 Smart grids 1.4 Challenges 1.4.1 Real-time analysis 1.4.2 Storage 1.4.3 Quality of service 1.4.4 Security challenges 1.5 Recent studies in the field of big data-enabled IoT 1.6 Conclusions References 2 Smarter big data analytics for traffic applications in developing countries 2.1 Introduction 2.1.1 Research challenges 2.1.2 Contributions and paper structure 2.2 Scenario and requirements 2.3 Analytics system framework for traffic applications 2.3.1 Design objectives 2.3.2 Framework overview 2.3.3 GPS data providers 2.3.4 Offline analytics 2.3.5 Data router and real-time analytics 2.3.6 Decision maker 2.3.7 Mobile and web applications 2.4 Big data applications and challenges 2.4.1 In-memory storage 2.4.2 Filtering unusable data for real-time analytics 2.4.3 Traffic monitoring and prediction 2.4.4 Trip planning in city bus networks 2.5 Related work 2.6 Conclusions References 3 Using IoT-based big data generated inside school buildings 3.1 Introduction 3.2 Related work 3.3 IoT and real-world data in education 3.3.1 End-user requirements 3.3.2 IoT platform design aspects 3.4 Design aspects of an IoT platform targeting education activities 3.4.1 End-device level 3.4.2 IT service ecosystem level 3.4.3 User involvement level 3.5 The GAIA IoT platform 3.5.1 Continuous computation engine 3.5.2 Data access and acquisition 3.6 Using IoT-generated big data in educational buildings 3.6.1 High-level IoT data analysis 3.6.2 Thermal comfort of classrooms 3.6.3 Classroom thermal performance 3.7 Conclusions Acknowledgments References 4 Autonomous collaborative learning in wearable IoT applications 4.1 Transfer learning in wearable IoT 4.2 Synchronous dynamic view learning 4.2.1 Problem definition 4.2.2 Problem formulation 4.2.3 Overview of autonomous learning 4.3 Minimum disagreement labeling 4.3.1 Label refinement 4.4 Experimental analysis 4.4.1 Evaluation methodology 4.4.2 Accuracy of transferred labels 4.4.3 Accuracy of activity recognition 4.4.4 Precision, recall, and F1-measure 4.5 Summary References 5 A distributed approach to energy-efficient data confidentiality in the Internet of Things 5.1 Introduction 5.2 Data confidentiality in the IoT 5.3 A distributed computation approach 5.4 Arduino-based experimental analysis 5.4.1 Testbed setup 5.4.2 Experimental measurements 5.4.2.1 Energy measurements 5.4.2.2 Lifetime increase: a single node's perspective 5.4.2.3 Lifetime increase: a multi-hop network perspective 5.4.2.4 Battery discharging profile 5.5 Zolertia-based simulation analysis 5.5.1 Simulator setup 5.5.2 Simulation results 5.6 Conclusions and future work References 6 An assessment of the efficiency of smart city facilities in developing countries: the case ofYaoundé, Cameroon 6.1 Introduction 6.2 Background 6.2.1 Smart city concept 6.2.1.1 Characteristics and dimensions of smart city 6.2.1.2 Definitions 6.2.2 Smart cities applications 6.2.2.1 Social aspects 6.2.2.2 Environmental aspects 6.2.2.3 Administrative aspects 6.2.3 Evaluation of smart city performance 6.3 Case study: the city of Yaoundé, Cameroon 6.3.1 Presentation of the city and its problems 6.3.2 Solutions and role of ICTs 6.3.3 Smart city project in Yaoundé 6.4 Evaluation of Yaoundé's performance as smart city with the revised triple helix framework 6.5 Conclusion, implications, and future directions References 7 A comparative study of software programming platforms for the Internet of Things 7.1 Introduction 7.1.1 Device connectivity cloud 7.2 Overview of IOT platforms 7.3 Comparisons of IoT platforms 7.3.1 Cloud-level platforms 7.3.1.1 Common features of cloud-level platforms 7.3.1.2 Comparisons of cloud-level platforms 7.3.2 Device-level platforms 7.3.2.1 Common features of device-level platforms 7.3.2.2 Comparisons of device-level platforms 7.3.3 Radio-level platforms 7.3.3.1 Common features of radio-level platforms 7.3.3.2 Comparisons of radio-level platforms 7.4 Programming models in practice 7.4.1 Device abstraction 7.4.1.1 Device-functionality abstraction 7.4.1.2 Device-addressing abstraction 7.4.2 Device discovery 7.4.2.1 Registration-based device attachment 7.4.2.2 Hub-based device discovery 7.4.2.3 Device-to-device discovery 7.4.3 Communication pattern 7.4.4 Device control 7.4.4.1 Device control model 7.4.4.2 Group control method 7.5 Challenges and future directions 7.5.1 Challenge 1: Massive scaling 7.5.2 Challenge 2: Device connectivity 7.5.3 Challenge 3: Control conflict 7.5.4 Challenge 4: Data consistency 7.5.5 Challenge 5: Communication model 7.6 Conclusion Acknowledgment References 8 Fog computing-based complex event processing for Internet of Things 8.1 Fog computing 8.1.1 Architecture of fog computing 8.1.2 Related terms 8.1.3 Characteristics of fog computing 8.1.4 Service level objectives 8.1.4.1 Computation management 8.1.4.2 Latency management 8.1.4.3 Resource management 8.1.4.4 Energy management 8.1.4.5 Reliability management 8.1.4.6 Security and privacy management 8.1.4.7 Mobility management 8.1.5 Application areas 8.1.5.1 Health-care systems 8.1.5.2 Smart grid/city environment 8.1.5.3 Vehicular networks/smart traffic lights 8.1.5.4 Augmented reality 8.1.5.5 Pre-caching 8.1.6 Limitations and challenges 8.1.7 Incorporating fog computing with emerging technologies 8.1.7.1 Fifth generation 8.1.7.2 Software-defined networking 8.1.7.3 Network function virtualization 8.1.7.4 Named data networking 8.1.7.5 Content delivery network 8.2 Complex event processing 8.2.1 Basic definitions 8.2.2 CEP reference architecture 8.2.2.1 Design time 8.2.2.2 Run time 8.2.2.3 Administration 8.2.3 Event detection models 8.2.4 Event-processing languages 8.2.4.1 Stream-oriented 8.2.4.2 Rule-oriented 8.2.4.3 Imperative 8.2.5 Algorithms used in CEP 8.2.5.1 Data volume 8.2.5.2 Data continuity 8.2.5.3 Data bound 8.2.5.4 Data evolution 8.2.5.5 Singular classifier approach 8.2.5.6 Ensemble classifier approach 8.2.5.7 Single-pass algorithms 8.2.5.8 Windowing approaches 8.2.6 Application areas 8.2.6.1 Transportation and traffic management 8.2.6.2 Health 8.2.6.3 Smart building 8.2.6.4 Smart grid/smart city 8.2.6.5 Other domains 8.2.7 Complex-event-processing challenges 8.2.8 Trends and future directions in event processing 8.3 An example scenario: smart city 8.4 Conclusion References 9 Ultra-narrow-band for IoT 9.1 Introduction 9.2 UNB system 9.2.1 UNB definition 9.2.2 Topology: single cell design 9.3 UNB interference characterization 9.4 UNB-associated MAC 9.4.1 Performance of CR-FDMA and DR-FDMA 9.4.2 Throughput of CR-FTDMA 9.5 UNB performances for same received power at the BS 9.5.1 One transmission 9.5.2 Multiple transmissions 9.6 UNB performances for diverse received power at the BS 9.6.1 Rectangular interference shape and stochastic geometry 9.6.2 Exact interference shape 9.6.3 Validation and comparison 9.6.4 Network spectral efficiency 9.7 Interference cancellation 9.8 Conclusion References 10 Fog-computing architecture: survey and challenges 10.1 Introduction 10.2 Fog-computing architecture 10.2.1 Existing research on fog-computing architecture 10.2.1.1 Fog-layered architecture 10.2.1.2 Hierarchical fog architecture 10.2.1.3 OpenFog architecture 10.2.1.4 Fog network architecture 10.2.1.5 Fog architecture for Internet of Energy 10.2.1.6 Fog-computing architecture based on nervous system 10.2.1.7 IFCIoT architecture 10.2.2 High-level fog-computing layered architecture 10.2.2.1 Fog-computing layer 10.2.2.2 Data-generation layer 10.2.2.3 Cloud-computing layer 10.3 Limitation of the cloud to execute Big Data applications 10.3.1 Exploding generation of sensor data 10.3.2 Inefficient use of network bandwidth 10.3.3 Latency awareness 10.3.4 Location awareness 10.4 Challenges faced when executing Big Data applications on fog 10.4.1 Resource limited fog device 10.4.2 Power limitation 10.4.3 Selection of master node 10.4.4 Connectivity 10.5 Recent advances on Big Data application execution on fog 10.6 Fog-computing products 10.6.1 Cisco IOx 10.6.2 LocalGrid's fog-computing platform 10.6.3 Fog device and gateways 10.7 Research issues 10.8 Conclusion References 11 A survey on outlier detection in Internet of Things big data 11.1 Introduction 11.2 Outliers-detection techniques 11.3 Requirements and performance metrics 11.4 Statistical-based techniques 11.4.1 Parametric based 11.4.1.1 Gaussian model based 11.4.1.2 Regression model based 11.4.2 Nonparametric based 11.4.2.1 Histograms 11.4.2.2 Kernel functions 11.5 Machine learning 11.5.1 Unsupervised learning 11.5.1.1 Partitioning-clustering methods 11.5.1.2 Hierarchical-clustering methods 11.5.1.3 Grid-based clustering methods 11.5.1.4 Density-based clustering methods 11.5.2 Supervised learning 11.5.2.1 Support vector machines (SVMs) methods 11.5.2.2 Isolation-forest methods 11.5.2.3 Mahalanobis-distance methods 11.6 Distance-based techniques 11.6.1 Local neighborhood 11.6.2 k-Nearest neighbors 11.7 Density-based techniques 11.7.1 Local outlier factor 11.7.2 Connectivity-based outlier factor 11.7.3 INFLuenced outlierness 11.7.4 Multi-granularity deviation factor 11.8 Conclusion References 12 Supporting Big Data at the vehicular edge 12.1 Introduction and motivation 12.2 The Internet of Things 12.3 Big data processing 12.4 Cloud computing and the datacenter 12.5 A survey of recent work on vehicular clouds 12.6 Our contributions 12.7 The vehicle datacenter model 12.8 The vehicle datacenter simulation 12.8.1 Datacenter controller 12.8.2 Resource manager 12.8.3 Job manager 12.8.4 Log manager 12.8.5 Network 12.8.6 Vehicles 12.9 Empirical performance evaluation 12.9.1 Simulation factors 12.9.1.1 Size of parking lot 12.9.1.2 Residency time of vehicles 12.9.1.3 Network configuration 12.9.1.4 Network throughput 12.9.1.5 Percentage of vehicles tasked 12.9.1.6 Number of worker objects 12.9.1.7 Number of simultaneous jobs 12.9.1.8 Size of jobs 12.9.2 Response variables 12.10 Simulation results 12.10.1 Correlation of job completion times 12.10.2 Performance between random and set job sizes 12.11 Concluding remarks 12.12 Looking into the crystal ball References 13 Big data-oriented unit and ubiquitous Internet of Things (BD-U2IoT) security 13.1 Introduction 13.2 Unit and ubiquitous Internet of Things 13.2.1 Storage and resource management in U2IoT 13.2.1.1 Resource management in unit IoT 13.2.1.2 Resource management in ubiquitous IoT 13.2.2 Security in big data-oriented U2IoT 13.2.2.1 Physical security 13.2.2.2 Information security 13.2.2.3 Management security References 14 Confluence of Big Data and Internet of Things—relationship, synergization, and convergence 14.1 Introduction 14.2 Anatomy of Big Data and IoT 14.2.1 Big Data 14.2.2 Internet of Things 14.3 Relationship model 14.3.1 Independent 14.3.2 Interconnecting 14.3.3 Interacting 14.3.4 Intertwined 14.4 Model pillars 14.4.1 Difference, implementation, similarity, and capability 14.4.1.1 Difference 14.4.1.2 Implementation 14.4.1.3 Similarities 14.4.1.4 Capability 14.4.2 Composition, realization, atomicity, and multiplicity 14.4.2.1 Composition 14.4.2.2 Realization 14.4.2.3 Atomicity 14.4.2.4 Multiplicity 14.4.3 Control, association, range, and dependency 14.4.3.1 Control 14.4.3.2 Association 14.4.3.3 Range 14.4.3.4 Dependency 14.4.4 Touchpoints, integration, mapping, and enablement 14.4.4.1 Touchpoints 14.4.4.2 Interplay 14.4.4.3 Mapping 14.4.4.4 Enablement 14.5 Application of relationship model 14.5.1 Independent pillar 14.5.2 Interconnecting pillar 14.5.3 Interacting pillar 14.5.4 Intertwined pillar 14.5.5 Putting it all together 14.5.5.1 Stepwise maturity 14.5.5.2 Hybrid stack 14.5.5.3 Adoption process 14.5.5.4 Native application 14.6 Conclusion References 15 Application of Internet of Things and big data for sustainability in water 15.1 Introduction 15.2 Sustainability in water 15.2.1 Source 15.2.2 Treatment 15.2.3 Reservoirs 15.2.4 Consumption 15.2.5 Wastewater 15.3 IoT and BD system architecture 15.3.1 IoT device 15.3.2 Communication technology 15.3.3 Internet 15.3.4 Big data processing 15.4 Application of IoT and BD in water sustainability 15.4.1 Smart metering 15.4.2 Leakage detection 15.4.3 Water pollution 15.4.4 Prediction and forecasting 15.5 Challenges 15.5.1 Cyber security 15.5.2 Data accuracy 15.5.3 Policy and regulations 15.5.4 Technology interoperability 15.6 Conclusion References 16 IoT-based smart transportation system under real-time environment 16.1 Introduction 16.1.1 Challenges 16.1.2 Objective 16.2 Recent trends in IoT application for the real-time transportation system 16.3 Data acquisition 16.4 Data processing 16.4.1 Data analysis 16.5 Existing works on IoT in the real-time transportation system 16.6 Conclusion 16.7 Future scope References 17 Edge computing: a future trend for IoT and big data processing 17.1 Definition of edge computing 17.2 Deployment scenarios 17.3 Service scenarios 17.4 Case studies 17.5 Business values 17.6 Challenges 17.7 Discussion 17.7.1 The difference between cloud computing and edge computing 17.7.2 The role of edge computing 17.7.3 Driving force 17.7.4 Current state of edge computing 17.8 Conclusion References 18 Edge computing-based architectures for big data-enabled IoT 18.1 Introduction 18.1.1 Cloud-computing architecture 18.1.1.1 Mobile cloud computing 18.1.1.2 Edge computing 18.1.2 Mobile cloud computing applications 18.1.3 Edge-computing applications 18.1.3.1 Cloudlet computing 18.1.3.2 Fog computing 18.1.3.3 Mobile edge computing 18.2 Challenges faced by edge computing 18.2.1 Offloading decision challenges 18.2.2 Interoperability challenges 18.2.3 Safety and security challenges 18.2.4 Performance optimization challenges 18.3 Big data-enabled IoT requirements and challenges for IoT and smart cities 18.3.1 Edge computing requirements 18.3.2 Edge computing challenges 18.4 Edge computing-based architecture for big data-enabled IoT 18.4.1 Distributed EC-based approaches 18.4.2 Centralized EC-based approaches 18.4.3 Peer-to-peer EC-based approaches 18.4.4 Hybrid EC-based approaches 18.5 Comparative analysis of edge computing-based approaches 18.6 Conclusion References 19 Information-centric trust management for big data-enabled IoT 19.1 Introduction 19.2 Overview of trust management 19.2.1 Definitions of trust 19.2.1.1 Trust in social psychology 19.2.1.2 Trust in philosophy 19.2.2 Semantics of trust 19.2.3 Elements of trust 19.3 Trust-management systems 19.3.1 Overview 19.3.2 Trust sources 19.3.3 Trust methods 19.4 Trust management for big data-enabled IoT 19.4.1 Information-centric trust-management systems 19.4.2 Challenges of information-centric trust 19.4.2.1 Data processing 19.4.2.2 Security and privacy 19.4.2.3 Interoperability 19.4.3 Requirements for trust in big data-enabled IoT 19.5 Recent advancements in information-centric trust management in big data-enabled IoT 19.5.1 Trusted data processing 19.5.1.1 Data sensing and collection 19.5.1.2 Data fusion and mining 19.5.1.3 Data transmission and communication 19.5.2 Security and privacy-enabled trust management 19.5.3 Trust frameworks for interoperability 19.6 Discussion and future research 19.6.1 Anticipated challenges and research trends 19.7 Conclusion References 20 Dependability analysis of IoT systems using dynamic fault trees analysis 20.1 Introduction 20.2 Background 20.2.1 IoT security 20.2.2 IoT dependability 20.2.3 Fault tree analysis 20.3 Methodology 20.4 Case study 20.5 Conclusion References Index Back Cover