ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Big Data and Social Computing: 7th China National Conference, BDSC 2022, Hangzhou, China, August 11-13, 2022, Revised Selected Papers

دانلود کتاب کلان داده و محاسبات اجتماعی: هفتمین کنفرانس ملی چین، BDSC 2022، هانگژو، چین، 11-13 اوت 2022، مقالات منتخب اصلاح شده

Big Data and Social Computing: 7th China National Conference, BDSC 2022, Hangzhou, China, August 11-13, 2022, Revised Selected Papers

مشخصات کتاب

Big Data and Social Computing: 7th China National Conference, BDSC 2022, Hangzhou, China, August 11-13, 2022, Revised Selected Papers

ویرایش:  
نویسندگان: , , , ,   
سری: Communications in Computer and Information Science, 1640 
ISBN (شابک) : 9811975310, 9789811975318 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 397
[398] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 36 Mb 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Big Data and Social Computing: 7th China National Conference, BDSC 2022, Hangzhou, China, August 11-13, 2022, Revised Selected Papers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کلان داده و محاسبات اجتماعی: هفتمین کنفرانس ملی چین، BDSC 2022، هانگژو، چین، 11-13 اوت 2022، مقالات منتخب اصلاح شده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کلان داده و محاسبات اجتماعی: هفتمین کنفرانس ملی چین، BDSC 2022، هانگژو، چین، 11-13 اوت 2022، مقالات منتخب اصلاح شده

این کتاب مجموعه مقالات داوری هفتمین کنفرانس ملی چین درباره داده‌های بزرگ و محاسبات اجتماعی، BDSC 2022 است که در هانگژو، چین، از 11 تا 13 اوت 2022 برگزار شد
24 مقاله کامل و 2 مقاله کوتاه ارائه شده در این جلد به دقت بررسی شد و از مجموع 99 مورد ارسالی انتخاب شد. مقالات این جلد بر اساس عناوین موضوعی زیر سازماندهی شده اند: محاسبات شهری و حکومت اجتماعی. هوش مصنوعی و علوم شناختی؛ شبکه اجتماعی و رفتار گروهی؛ جامعه دیجیتال و امنیت عمومی؛ دولت دیجیتال و کلان داده های عمومی


توضیحاتی درمورد کتاب به خارجی

This book constitutes refereed proceedings of the 7th China National Conference on Big Data and Social Computing, BDSC 2022, held in Hangzhou, China, from August 11-13, 2022
The 24 full papers and 2 short papers presented in this volume were carefully reviewed and selected from a total of 99 submissions. The papers in the volume are organised according to the following topical headings: urban computing and social governance; artificial intelligence and cognitive science; social network and group behavior; digital society and public security; digital government and public big data



فهرست مطالب

Preface
Organization
Contents
Urban Computing and Social Governance
Resilience-Based Epidemic Strategy Evaluation Method Under Post-Covid-19
	1 Introduction
	2 Theoretical Basis
		2.1 Urban Subsystems Applied to Resilience
		2.2 Resilience Concept Applied to Urban System
		2.3 Strategy Evaluation Method Applied to Urban Resilience
	3 Strategy Evaluation Framework
	4 Case Analysis and Discussion
		4.1 Identifying Evaluable Strategies
		4.2 Identifying Evaluable Strategies
		4.3 Resilience Capacity Index System of Urban Social System Under Epidemic
		4.4 Accumulation
		4.5 Discussion
	5 Conclusion
	References
The Effects of Intervention Strategies for COVID-19 Transmission Control on Campus Activity
	1 Introduction
	2 Methodology
		2.1 Model of Infection Risk
		2.2 Case Design
	3 Results
		3.1 The Transmission of COVID-19 Caused by the Alumni Group for the Baseline Case
		3.2 The Effect of Ventilation, Social Distancing and Wearing Mask on COVID-19 Transmission
		3.3 The Impact of Combined Intervention Measures on the COVID-19 Transmission
	4 Discussion
		4.1 The Transmission Risk Brought by Staff During the Anniversary
		4.2 The Comparison of Cases with Different Initial Infector Proportions
		4.3 The Limitations of This Study
	5 Conclusions
	References
Social Resilience Assessment for Urban System: A Case Study of COVID-19 Epidemic
	1 Introduction
	2 Gap Analysis-Based Assessment Method
	3 Case Analysis of COVID-19 Epidemic
		3.1 Materials and Methods
		3.2 Data Analysis Results
		3.3 Resilience Analysis
	4 Discussion
	5 Conclusion
	References
Prediction of Female Fertility Structure and Population Change in China by Modified SIR Model
	1 Introduction
	2 SIR Fertility Structure and Population Prediction Model
		2.1 Model Front
		2.2 Basic Prediction Model
		2.3 Parameters of the Model
	3 Data Source and Parameter Setting
		3.1 Data Sources
		3.2 Parameter Setting
	4 Analysis of Empirical Results
		4.1 SIR Population Model Prediction Analysis
		4.2 Model Prediction Error Validation Analysis
		4.3 Model Prediction of Future Population Scenarios
	5 Conclusion
	References
Generative Adversarial Network for Imputation of Road Network Traffic State Data
	1 Introduction
	2 Methodology
		2.1 Data Preprocessing
		2.2 The Feature Abstraction of Road Network Based on GAE
		2.3 The Design of Generative Adversarial Network for Spatio-Temporal Feature Based on LSTM
		2.4 The Imputation of Road Network Data Based on GAE-GAN
	3 Experiment
		3.1 Experimental Design
		3.2 Parameter Setting and Model Index
	4 Results and Discussion
		4.1 Effectiveness of GAE
		4.2 Effectiveness of Internal Structure of Generator (LSTM)
		4.3 Comparison with Other Models
	5 Conclusions
	References
Artificial Intelligence and Cognitive Science
Improving Events Classification with Latent Space Clustering-Based Similarities
	1 Introduction
	2 Related Work
		2.1 Keyword Extraction
		2.2 Text Clustering
	3 Method
		3.1 Data Preprocessing
		3.2 Initialize Clustering of the Training Data
		3.3 Calculate the Classification Similarities of Event Categories
		3.4 Process New Monitoring Event
		3.5 Update Event Knowledge Database
		3.6 Process Accumulated Noise Data
		3.7 Optimal Learning of the Model
	4 Experimental Results and Discussion
		4.1 Experimental Datasets
		4.2 Baseline Models and Parameter Settings
		4.3 Overall Performance
	5 Conclusion
	References
SubGraph Networks Based Entity Alignment for Cross-Lingual Knowledge Graph
	1 Introduction
	2 Related Work
		2.1 GCN
		2.2 SGN
		2.3 Knowledge Graph Alignment Based on Embedding
	3 Methodology
		3.1 Problem Definition
		3.2 Enhanced Structure Embedding Based on Subgraph Feature
		3.3 GCN-Based Entity Embedding
		3.4 Model Training
		3.5 Knowledge Graph Entity Alignment Prediction
	4 Experiments
		4.1 Experimental Setting
		4.2 DataSet
		4.3 Result
	5 Conclusion
	References
A Secured Deep Reinforcement Learning Model Based on Vertical Federated Learning
	1 Introduction
	2 Related Works
		2.1 Deep Reinforcement Learning
		2.2 Defense for Deep Reinforcement Learning
	3 VF-DRL
		3.1 Overview
		3.2 Global Model
		3.3 Building VF-DRL Model Framework
		3.4 Model Training and Implementation
	4 Experiment and Analysis
		4.1 Experiment Setup
		4.2 Environment of Experiment
		4.3 Training Model
		4.4 Robustness Verification of VF-DRL Models
	5 Conclusion
	References
An Improved K-means Algorithm Based on the Bayesian Inference
	1 Introduction
	2 Bayes-K-means Clustering Algorithm
		2.1 Improvement of K-means Algorithm
		2.2 Algorithm Steps
		2.3 Algorithm Convergence
	3 Experimental Results and Analysis
		3.1 Data Acquisition and Processing
		3.2 Apply Bayes-K-means Algorithm to Cluster Dataset
		3.3 Experimental Results and Analysis on the Self-made Dataset
		3.4 Experimental Results and Analysis on the UCI Datasets
	4 Conclusion
	References
Social Network and Group Behavior
Inductive Matrix Completion Based on Graph Attention
	1 Introduction
	2 Related Works
	3 Inductive Graph-Attention Based Matrix Completion
		3.1 One-Hop Enclosing Subgraph Extraction and Node Labeling
		3.2 Graph Neural Network Architecture
		3.3 Model Training
	4 Experiment and Result
	5 Conclusion
	References
Identifying Spammers by Completing the Ratings of Low-Degree Users
	1 Introduction
	2 Preliminaries
		2.1 Network
		2.2 Rating Network
	3 Methodology
		3.1 Iterative Optimization Ranking (IOR)
		3.2 Completing the Ratings of Low-degree Users on IOR (IOR_LU)
	4 Data and Metric
		4.1 Rating Data Set
		4.2 Generating Artificial Spammers
		4.3 Evaluation Metric
	5 Experimental Results
		5.1 Effectiveness
		5.2 Robustness
	6 Conclusion and Discussion
	References
Predicting Upvotes and Downvotes in Location-Based Social Networks Using Machine Learning
	1 Introduction
	2 Data Collection and Conventional Feature Analysis
		2.1 Dataset
		2.2 Analysis of Conventional Features
	3 System Design and Implementation
		3.1 Overview
		3.2 Entropy
		3.3 Effective Size
		3.4 Model Construction
	4 Evaluation of Prediction Performance
		4.1 Performance Evaluation
		4.2 Feature Importance Analysis
	5 Related Work
	6 Conclusion
	References
How Does Participation Experience in Collective Behavior Contribute to Participation Willingness: A Survey of Migrant Workers in China
	1 Introduction
	2 Literature Review and Research Hypotheses
		2.1 Planned Behavior and Resource Mobilization
		2.2 Research Hypotheses
	3 Methodology
		3.1 Data
		3.2 Variables
	4 Results
		4.1 Common Method Deviation Biases
		4.2 Descriptive Statistical Analysis
		4.3 Hypothesis Testing
		4.4 Robustness Test
	5 Conclusion
	References
Research on Network Invulnerability and Its Application on AS-Level Internet Topology
	1 Introduction
	2 Theory
		2.1 Node Importance Indicators
		2.2 Neighbor Influence-based Node Ranking
		2.3 Multi-attribute Fusion-Based Node Ranking
	3 Evaluation Metrics
	4 Experiment
		4.1 Datasets
		4.2 Structure-Based Evaluation Experiments
		4.3 Multi-attribute-Based Evaluation Experiments
	5 Conclusion
	References
Digital Society and Public Security
FedDFA: Dual-Factor Aggregation for Federated Driver Distraction Detection
	1 Introduction
	2 Related Work
		2.1 Vision-Based Driver Distraction Detection
		2.2 Federated Learning
	3 Pre-experiments
	4 Method
		4.1 Problem Definition
		4.2 Overview
		4.3 Federated Dual-Factor Aggregation
	5 Experiments
		5.1 Datasets
		5.2 Comparison Method
		5.3 Implementation Details
		5.4 Experimental Analysis
	6 Discussion and Conclusion
	References
Defense of Signal Modulation Classification Attack Based on GAN
	1 Introduction
	2 Related Work
	3 Our Work
		3.1 Model
		3.2 Training
		3.3 Reconstruction
	4 Experiment
		4.1 Data Selection
		4.2 Experiment Setup
		4.3 Result
	5 Conclusion
	References
Dual-Channel Early Warning Framework for Ethereum Ponzi Schemes
	1 Introduction
	2 Related Work
	3 Methodology
		3.1 Data Collection
		3.2 Micro Transaction Graph
		3.3 Temporal Evolution Augmentation of Transaction Graph
		3.4 Dual-Channel Early Warning Model
	4 Experiments
		4.1 Data Setting
		4.2 Baselines
		4.3 Experiment Setting
		4.4 Evaluation on Ponzi Detection (RQ1)
		4.5 Single Channel Analysis (RQ2)
		4.6 Threshold of Reporting Ponzi Schemes (RQ3)
		4.7 Ablation Study
	5 Conclusion
	References
Rumor Detection Based on the Temporal Sentiment
	1 Introduction
	2 Related Work
		2.1 Single-Modal Rumor Detection
		2.2 Multi-modal Rumor Detection
		2.3 Rumor Detection Based on Sentiment Analyze
	3 Method
		3.1 Problem Statement
		3.2 Microblog Representation
		3.3 Comprehensive Representation
		3.4 Rumor Classifier
	4 Experiments
		4.1 Datasets
		4.2 Baseline Models
		4.3 Experimental Settings
		4.4 Evaluation Metrics
		4.5 Experimental Results
		4.6 Discussions
	5 Conclusion
	References
Research on Users’ Trust in Customer Service Chatbots Based on Human-Computer Interaction
	1 Introduction
	2 Literature Review
	3 Interview Analysis Based on Value Focus Thinking
		3.1 Value Focused Thinking
		3.2 Interview Data Collection
		3.3 Analysis Steps
		3.4 Construction of Users’ Trust Model for Customer Service Chatbots
	4 The Questionnaire Survey
		4.1 Hypothesis
		4.2 Questionnaire Data Collection
		4.3 Data Analysis
	5 Summary
		5.1 Conclusions
		5.2 Contributions
		5.3 Limitations and Further Research
	References
Digital Government and Public Big Data
Analysis of Influencing Factors of Birth Rate and Prediction of Policy Scenario
	1 Introduction
	2 Birth Rate Evaluation Factor System
		2.1 Analysis of Influencing Factors of Birth Rate
		2.2 Analysis of Population Structure Factors
		2.3 Analysis on Factors of Marriage Intention
		2.4 Analysis on Factors of Fertility Intention
		2.5 Construction of Evaluation Factor System
	3 Birth Rate Prediction Model Based on BPNN (BRPM-BPNN)
		3.1 Model Input Factor Description
		3.2 BP Neural Network Model Training
		3.3 Prediction of Birth Rate Based on BP Neural Network
	4 Policy Scenario Prediction Related to Birth Rate
		4.1 Analysis of Fertility Policies and Supporting Measures
		4.2 Scenario Design of Policies Related to Birth Rate
		4.3 Scenario Prediction Based on BRPM-BPNN Model
		4.4 Policy Recommendations
	5 Summary
	References
The Role of Positive Feedbacks in the Watts Model
	1 Introduction
	2 Model
	3 Simulation Results
	4 Conclusion
	References
Discover Important Paths in the Knowledge Graph Based on Dynamic Relation Confidence
	1 Introduction
	2 Related Work
		2.1 Reasoning Method Based on Path Features
		2.2 The Reasoning Method Based on Representation Learning
		2.3 Reasoning Method Based on Association Rules
		2.4 Reasoning Method Based on Neural Network
	3 Method
		3.1 KG Preprocessing
		3.2 Path Evaluation
		3.3 Path Search and Strategy Update
		3.4 Path Selection
		3.5 Train Linear Regression Models for Relation Reasoning Tasks
	4 Experiments
		4.1 Dataset
		4.2 Baseline and Details
		4.3 Experimental Setting
		4.4 Results and Analysis
	5 Conclusion
	References
The Comparative Landscape of Chinese and Foreign Applications on Blockchain in E-government
	1 Introduction
	2 Description of Literature
	3 Research Methods and Data
		3.1 Research Methods
		3.2 Data Acquisition
	4 Data Analysis and Results
		4.1 Descriptive Statistical Analysis
		4.2 Research Hotspot Analysis
		4.3 Authors Co-wrote Analysis
		4.4 Geographic Collaboration Analysis
		4.5 Institutional Cooperation Analysis
		4.6 Journal Overlay Analysis
	5 Conclusion
	References
Research on Medical Question Answering System Based on Joint Model
	1 Introduction
	2 Related Work
		2.1 Progress in Medical Knowledge Graph Research
		2.2 Question Answering System Based on Knowledge Graph
		2.3 Medical Named Entity Identification
		2.4 Medical Relationship Extraction
	3 Construction of Medical Knowledge Graph NWNU-KG
		3.1 Medical Data Acquisition
		3.2 Classification and Storage of Medical Knowledge
	4 Construction of Question Answering System Based on BCCD Model
		4.1 Question Analysis Module
		4.2 Information Retrieval and Answer Extraction Module
	5 Experiment
		5.1 Experiment Environment
		5.2 Experimental Results and Analysis
	6 Conclusion
	References
Author Index




نظرات کاربران