دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Gregory Richards (editor)
سری: Data Analytics Applications
ISBN (شابک) : 9781498764346, 1498764347
ناشر: Auerbach Publications
سال نشر: 2017
تعداد صفحات: 267
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 34 مگابایت
در صورت تبدیل فایل کتاب Big Data and Analytics Applications in Government: Current Practices and Future Opportunities (Data Analytics Applications) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربردهای کلان داده و تجزیه و تحلیل در دولت: روش های فعلی و فرصت های آینده (برنامه های تجزیه و تحلیل داده ها) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در این زمینه، تجزیه و تحلیل داده های بزرگ (BDA) می تواند ابزار مهمی باشد، زیرا بسیاری از تکنیک های تحلیلی در دنیای کلان داده به طور خاص برای مقابله با پیچیدگی و شرایط به سرعت در حال تغییر ایجاد شده اند. وظیفه مهم سازمانهای بخش عمومی این است که تجزیه و تحلیل را از سیلوهای علمی محدود آزاد کنند و آن را در داخل گسترش دهند تا حداکثر سود را در مجموعه برنامههایشان ببرند.
این کتاب عوامل زمینهای مهم برای موقعیت بهتر استفاده از BDA را برجسته میکند. در سازمان های دولتی و طیف گسترده ای از کاربردهای تکنیک های مختلف BDA را نشان می دهد. بر اهمیت رهبری و شیوه های سازمانی که می تواند عملکرد را بهبود بخشد، تأکید می کند. این توضیح میدهد که ابتکارات BDA نباید به کار بسته شود، بلکه باید در فرآیندهای مدیریت عملکرد سازمان ادغام شود. به همان اندازه مهم، این کتاب شامل فصلهایی است که تنوع عواملی را که برای راهاندازی و حفظ ابتکارات BDA در سازمانهای بخش عمومی باید مدیریت شوند، نشان میدهد.
Within this context, big data analytics (BDA) can be an important tool given that many analytic techniques within the big data world have been created specifically to deal with complexity and rapidly changing conditions. The important task for public sector organizations is to liberate analytics from narrow scientific silos and expand it across internally to reap maximum benefit across their portfolios of programs.
This book highlights contextual factors important to better situating the use of BDA within government organizations and demonstrates the wide range of applications of different BDA techniques. It emphasizes the importance of leadership and organizational practices that can improve performance. It explains that BDA initiatives should not be bolted on but should be integrated into the organization’s performance management processes. Equally important, the book includes chapters that demonstrate the diversity of factors that need to be managed to launch and sustain BDA initiatives in public sector organizations.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Contents Foreword Preface List of Contributors Editor Chapter 1 Unraveling Data Science, Artificial Intelligence, and Autonomy 1.1 The Beginnings of Data Science 1.2 The Beginnings of Artificial Intelligence 1.3 The Beginnings of Autonomy 1.4 The Convergence of Data Availability and Computing 1.5 Machine Learning the Common Bond 1.5.1 Supervised Learning 1.5.2 Unsupervised Learning 1.5.3 Reinforcement Learning 1.6 Data Science Today 1.7 Artificial Intelligence Today 1.8 Autonomy Today 1.9 Summary References Chapter 2 Unlock the True Power of Data Analytics with Artificial Intelligence 2.1 Introduction 2.2 Situation Overview 2.2.1 Data Age 2.2.2 Data Analytics 2.2.3 Marriage of Artificial Intelligence and Analytics 2.2.4 AI-Powered Analytics Examples 2.3 The Way Forward 2.4 Conclusion References Chapter 3 Machine Intelligence and Managerial Decision-Making 3.1 Managerial Decision-Making 3.1.1 What Is Decision-Making? 3.1.2 The Decision-Making Conundrum 3.1.3 The Decision-Making Process 3.1.4 Types of Decisions and Decision-Making Styles 3.1.5 Intuition and Reasoning in Decision-Making 3.1.6 Bounded Rationality 3.2 Human Intelligence 3.2.1 Defining What Makes Us Human 3.2.2 The Analytical Method 3.2.3 “Data-Driven” Decision-Making 3.3 Are Machines Intelligent? 3.4 Artificial Intelligence 3.4.1 What Is Machine Learning? 3.4.2 How Do Machines Learn? 3.4.3 Weak, General, and Super AI 3.4.3.1 Narrow AI 3.4.3.2 General AI 3.4.3.3 Super AI 3.4.4 The Limitations of AI 3.5 Matching Human and Machine Intelligence 3.5.1 Human Singularity 3.5.2 Implicit Bias 3.5.3 Managerial Responsibility 3.5.4 Semantic Drift 3.6 Conclusion References Chapter 4 Measurement Issues in the Uncanny Valley: The Interaction between Artificial Intelligence and Data Analytics 4.1 A Momentous Night in the Cold War 4.2 Cybersecurity 4.3 Measuring AI/ML Performance 4.4 Data Input to AI Systems 4.5 Defining Objectives 4.6 Ethics 4.7 Sharing Data—or Not 4.8 Developing an AI-Aware Culture 4.9 Conclusion References Chapter 5 An Overview of Deep Learning in Industry 5.1 Introduction 5.1.1 An Overview of Deep Learning 5.1.1.1 Deep Learning Architectures 5.1.2 Deep Generative Models 5.1.3 Deep Reinforcement Learning 5.2 Applications of Deep Learning 5.2.1 Recognition 5.2.1.1 Recognition in Text 5.2.1.2 Recognition in Audio 5.2.1.3 Recognition in Video and Images 5.2.2 Content Generation 5.2.2.1 Text Generation 5.2.2.2 Audio Generation 5.2.2.3 Image and Video Generation 5.2.3 Decision-Making 5.2.3.1 Autonomous Driving 5.2.3.2 Automatic Game Playing 5.2.3.3 Robotics 5.2.3.4 Energy Consumption 5.2.3.5 Online Advertising 5.2.4 Forecasting 5.2.4.1 Forecasting Physical Signals 5.2.4.2 Forecasting Financial Data 5.3 Conclusion References Chapter 6 Chinese AI Policy and the Path to Global Leadership: Competition, Protectionism, and Security 6.1 The Chinese Perspective on Innovation and AI 6.2 AI with Chinese Characteristics 6.3 National Security in AI 6.4 “Security” or “Protection” 6.5 A(Eye) 6.6 Conclusions Bibliography Chapter 7 Natural Language Processing in Data Analytics 7.1 Background and Introduction: Era of Big Data 7.1.1 Use Cases of Unstructured Data 7.1.2 The Challenge of Unstructured Data 7.1.3 Big Data and Artificial Intelligence 7.2 Data Analytics and AI 7.2.1 Data Analytics: Descriptive vs. Predictive vs. Prescriptive 7.2.2 Advanced Analytics toward Machine Learning and Artificial Intelligence 7.2.2.1 Machine Learning Approaches 7.3 Natural Language Processing in Data Analytics 7.3.1 Introduction to Natural Language Processing 7.3.2 Sentiment Analysis 7.3.3 Information Extraction 7.3.4 Other NLP Applications in Data Analytics 7.3.5 NLP Text Preprocessing 7.3.6 Basic NLP Text Enrichment Techniques 7.4 Summary References Chapter 8 AI in Smart Cities Development: A Perspective of Strategic Risk Management 8.1 Introduction 8.2 Concepts and Definitions 8.2.1 How Are AI, Smart Cities, and Strategic Risk Connected? 8.3 Methodology and Approach 8.4 Examples of Creating KPIs and KRIs Based on Open Data 8.4.1 Stakeholder Perspective 8.4.2 Financial Resources Management Perspective 8.4.3 Internal Process Perspective 8.4.4 Trained Public Servant Perspective 8.5 Discussion 8.6 Conclusion References Chapter 9 Predicting Patient Missed Appointments in the Academic Dental Clinic 9.1 Introduction 9.2 Electronic Dental Records and Analytics 9.3 Impact of Missed Dental Appointments 9.4 Patient Responses to Fear and Pain 9.4.1 Dental Anxiety 9.4.2 Dental Avoidance 9.5 Potential Data Sources 9.5.1 Dental Anxiety Assessments 9.5.2 Clinical Notes 9.5.3 Staff and Patient Reporting 9.6 Conclusions References Chapter 10 Machine Learning in Cognitive Neuroimaging 10.1 Introduction 10.1.1 Overview of AI, Machine Learning, and Deep Learning in Neuroimaging 10.1.2 Cognitive Neuroimaging 10.1.3 Functional Near-Infrared Spectroscopy 10.2 Machine Learning and Cognitive Neuroimaging 10.2.1 Challenges 10.3 Identifying Functional Biomarkers in Traumatic Brain Injury Patients Using fNIRS and Machine Learning 10.4 Finding the Correlation between Addiction Behavior in Gaming and Brain Activation Using fNIRS 10.5 Current Research on Machine Learning Applications in Neuroimaging 10.6 Summary References Chapter 11 People, Competencies, and Capabilities Are Core Elements in Digital Transformation: A Case Study of a Digital Transformation Project at ABB 11.1 Introduction 11.1.1 Objectives and Research Approach 11.1.2 Challenges Related to the Use of Digitalization and AI 11.2 Theoretical Framework 11.2.1 From Data Collection into Knowledge Management and Learning Agility 11.2.2 Knowledge Processes in Organizations 11.2.3 Framework for Competency, Capability, and Organizational Development 11.2.4 Management of Transient Advantages Is a Core Capability in Digital Solution Launch and Ramp-Up 11.3 Digital Transformation Needs an Integrated Model for Knowledge Management and Transformational Leadership 11.4 Case Study of the ABB Takeoff Program: Innovation, Talent, and Competence Development for Industry 4.0 11.4.1 Background for the Digital Transformation at ABB 11.4.2 The Value Framework for IIoT and Digital Solutions 11.4.3 Takeoff for Intelligent Industry: Innovation, Talent, and Competence Development for Industry 4.0 11.4.4 Case 1: ABB Smartsensor: An Intelligent Concept for Monitoring 11.4.5 Case 2: Digital Powertrain: Optimization of Industrial System Operations 11.4.6 Case 3: Autonomous Ships: Remote Diagnostics and Collaborative Operations for Ships 11.5 Conclusions and Future Recommendations 11.5.1 Conclusions 11.5.2 Future Recommendations 11.5.3 Critical Roles of People, Competency, and Capability Development References Chapter 12 AI-Informed Analytics Cycle: Reinforcing Concepts 12.1 Decision-Making 12.1.1 Data, Knowledge, and Information 12.1.2 Decision-Making and Problem-Solving 12.2 Artificial Intelligence 12.2.1 The Three Waves of AI 12.3 Analytics 12.3.1 Analytics Cycle 12.4 The Role of AI in Analytics 12.5 Applications in Scholarly Data 12.5.1 Query Refinement 12.5.2 Complex Task and AI Method 12.6 Concluding Remarks References Index