دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2021] نویسندگان: Sanjiv Sharma (editor), Valiur Rahaman (editor), G. R. Sinha (editor) سری: ISBN (شابک) : 9811647283, 9789811647284 ناشر: Springer سال نشر: 2021 تعداد صفحات: 329 [316] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Big Data Analytics in Cognitive Social Media and Literary Texts: Theory and Praxis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل کلان داده در رسانه های اجتماعی شناختی و متون ادبی: نظریه و عمل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Acknowledgements Introduction Contents About the Editors 1 The Concept of Cognitive Social Media and Cognitive Literary Studies 1.1 Introduction 1.2 Cognitive and Its Aspects 1.3 Literature and the Function of Literary Studies 1.4 Poetry 1.5 Prose 1.6 Fiction or Novel 1.7 Works of Art into Text 1.8 Translation as Cognitive Literary Text 1.9 Translation as Literary Texts 1.10 Social and Political Factors of Shahid’s and Faiz’s Poetry 1.11 Translation as a Medium of Reformation 1.12 Translation as Cultural Human Capital 1.13 Big Data Analytics in Literary Texts 1.14 Why Big Data? 1.15 Criticism of Big Data Analytics 1.16 Types of Analysis and W5 Formula in BDA 1.17 BDA in Humanities and Social Sciences 1.18 Cyberculture 1.19 Emergence of Digital Humanities and Big Data Analytics 1.20 Conclusion References 2 Big Data Analytics for Market Prediction via Consumer Insight 2.1 Big Data 2.1.1 Big Data Types 2.1.2 Storage of Big Data 2.1.3 Three Characteristics of Big Data 2.1.4 Uncertainty Prediction Using Big Data 2.2 Big Data Analytics 2.2.1 Big Data Analytics Types 2.3 Key Performance Indicators 2.3.1 Types of KPIs 2.4 Segmentation 2.4.1 Segmentation as Clustering 2.4.2 Segmentation as Classification 2.5 Targeting 2.5.1 Behavioral Approach 2.5.2 Demographics 2.5.3 Transaction Response 2.5.4 Sentimental Manifestation 2.5.5 Targeting Via Traditional Approach Versus Big Data Approach 2.6 Positioning 2.7 Association Rules 2.8 Case Studies 2.8.1 Walmart 2.8.2 eBay 2.8.3 Alibaba 2.8.4 Amazon 2.8.5 McDonald’s 2.9 Conclusion References 3 Deconstructive Big Data Analytics: Literary Texts Analysis Through Atlas.ti Software 3.1 Introduction: What is Deconstruction? 3.2 Deconstruction is Not Only a Method 3.3 Transdisciplinary Facets of Deconstruction 3.4 Deconstruction in Literary Theory 3.5 Meta-Discourse: Levonorgestrel Implications of Philosophical Discourses 3.6 Why Are the Literary Texts Complex? 3.7 Fluidities of Literary Texts and Semanalysis 3.8 Understanding Deconstruction for Big Data Analytics 3.9 Reading Philosophy as Literature: Case Study-1 3.10 Reading Literature as Philosophy: Case Study-2 3.11 Reading Literature Increases Analytic Skills 3.12 Deconstructive Big Data Analytics 3.13 Conclusion References 4 Study of Big Data Analytics Tool: Apache Spark 4.1 Notion of Machine Learning with Big Data 4.1.1 Sources of Big Data 4.1.2 Big Data Characteristics 4.1.3 Applications of Big Data 4.2 Apache Spark 4.2.1 Architecture of Apache Spark Components and API 4.2.2 Difference Between Hadoop and Apache Spark 4.2.3 Basic Programming in Apache Spark 4.2.4 Basic Functions in Apache Spark 4.2.5 Calculating Sum Using Apache Spark 4.2.6 Calculating Mean Using Apache Spark 4.2.7 Calculating Standard Deviation Using Apache Spark 4.3 Data Frame in Apache Spark 4.3.1 Data Frame Operations Using Apache Spark 4.3.2 Python Spark SQL (Pyspark) 4.4 Unsupervised Learning with Apache Spark 4.4.1 Introduction to Clustering 4.4.2 Introduction to K-Means Clustering 4.4.3 Objective of K-Means 4.4.4 Using K-means in Apache SparkML 4.5 Supervised Learning with Apache Spark 4.5.1 Linear Regression 4.5.2 Steps to Create a Regression 4.5.3 Programming Demonstration Using R Language 4.5.4 Logistic Regression 4.5.5 Logistic Regression with Apache SparkML 4.6 Conclusion References 5 Contemporary Social Media and IoT-Based Pandemic Control: Exploring Possibilities of Big Data Analytics for Healthcare Governance 5.1 Introduction: Social Media for Contemporary Healthcare 5.2 The Pandemic: Coronavirus 5.3 Social Media and the Current Situation 5.4 Big Data Analytics 5.5 Big Data Analytics Observation Through Social Media for Covid-19 5.6 Tools Used for Big Data Analytics 5.7 Big Data to Cure Covid-19 5.7.1 Coronavirus Diagnosis/Treatment 5.7.2 Challenges that Comes During This Pandemic 5.8 Discussion 5.8.1 Process Involved in IoT for Healthcare 5.8.2 Interconnected Hospital 5.8.3 Internet of HealthCare 5.8.4 Covidapp 5.8.5 Registration 5.8.6 Map Positioning 5.8.7 Start Consultation 5.8.8 Diagnosis 5.8.9 Confirmed Diagnosis 5.8.10 Suspected Diagnosis 5.8.11 Treatment 5.8.12 Mild 5.8.13 Moderated 5.8.14 Severe 5.8.15 Challenges 5.9 Conclusion References 6 Analyzing Women Health-Related Quality of Life Using Sentiment Analysis on Social Media 6.1 Introduction 6.2 Literature Study 6.3 Sentiment Analysis 6.3.1 Emotion-Based Sentiment Word Extraction 6.3.2 Sentiment Analysis Using Classifiers 6.4 Experiment Results 6.4.1 Training Data Collection 6.4.2 Emotion-Based Classifiers 6.5 Conclusion References 7 Necessity of Big Data Analytics in Social Media for Questioning the Existence and Survival of Women and the Marginalized People 7.1 Introduction 7.2 Aesthetics of Existence 7.3 Women and the Marginalized During Pandemic 7.4 Gender-Biased Violence and IPV During Pandemic 7.5 The Marginalized Dislocation 7.6 Why Big Data Analytics for Social and Psychological Impact of the Pandemic 7.7 Women’s Condition 7.8 Meaning of the “Marginalized”: Notions from Philosophy to Public 7.9 Deconstructing the Marginality and Minority Writings 7.10 Women’s Suffering Challenged Through Digital NGO 7.11 Conclusion References 8 Big Data Analytics and Cybersecurity: Emerging Trends 8.1 Introduction 8.2 Fundamentals of Big Data 8.3 Cybersecurity in Cloud Computing 8.4 Big Data Technologies in Cybersecurity Analytics 8.4.1 Supervised Method 8.4.2 Unsupervised Method 8.5 Emerging Trends in Cybersecurity Analytics in 2019/2020 8.6 Conclusion References 9 Seizing the Networked Crime: Legal Framework for the Governance of Social Media Crimes in India 9.1 Introduction 9.2 Objectives 9.3 Methods 9.4 Sources of Data and Design 9.5 Review of Literature 9.6 Results and Discussion 9.7 Provisions of Information Technology Act, 2000 Related to Social Media 9.8 Provisions Related to Social Media in the Indian Penal Code 9.9 Draft Personal Data Protection Bill, 2019 9.9.1 Jammu and Kashmir Case 9.9.2 Sushant Singh Rajput Death Probe Case 9.9.3 Prashant Bhushan Case 9.9.4 Ban of Certain Social Media Applications Case 9.10 Future Prospective 9.11 Conclusion References 10 Toxic Masculinity and Inherent Misogyny on Social Media: Preventive Laws and Indian Judicial Approach 10.1 Introduction 10.2 Toxic Masculinity and Inherent Misogyny 10.3 Toxic Masculinity and Social Media 10.4 Preventive Legislation 10.4.1 Resolution L. 13 of UNHRC 10.4.2 Information Technology Act (2000) 10.4.3 Indian Penal Code (1860) 10.5 Judicial Activism in Toxic Masculinity 10.6 Conclusion References 11 Quantifying Human Sentiments Using Qualitative Approach with Semantic-Sentiment Analysis 11.1 Introduction 11.1.1 Increasing Importance of Human Sentiments for Business and Academic Research 11.2 The Building Concepts 11.2.1 Human Sentiments 11.2.2 Semantic Analysis 11.3 Quantifying Human Sentiments: Ways Implied from Research 11.3.1 Does Qualitative Research Methods Give an Edge? 11.3.2 Our Way 11.4 Illustration of Semantic-Sentiment Analysis 11.4.1 Problem Statement 11.4.2 Solution 11.4.3 Inference and Implication 11.5 Caselets for Practice 11.5.1 A Caselet of Academic Research 11.5.2 A Caselet of Business Research 11.6 Further Discussion 11.7 Conclusion Appendix A.1: Data Sources Appendix B.1: RStudio Code Block Appendix C.1: Hints for Solving the Caselets References 12 Cognitive Transformation Through Social Media 12.1 Introduction 12.2 Background 12.3 Statistics 12.4 Interacting Virtually and Communicating Globally 12.5 Interacting Virtually and Communicating Individually 12.6 Social Media and Social Structure 12.7 Popular Media and Social Relationships 12.8 Social Relations and Their Importance 12.9 Communication Media and Social Institutions 12.10 Connection Between Media and Public 12.11 Media and Society Model 12.12 Social Media and Social Dynamics Through Individual Morals 12.13 Conclusion References 13 Understanding Digital Diaspora as Cognitive Social Media: Necessity of Big Data Analytics for Peace and Harmony 13.1 Introduction: Diasporas and Digital Diasporas 13.2 Diaspora is a Social Formation 13.3 Digital Diasporas and Its Discontents 13.4 Logic of e-Diaspora, Digital Diaspora, and Big Data 13.5 Understanding Diasporic Experience in Literary Texts 13.6 Major Themes of Diaspora Writing 13.7 Digital Diaspora a World Phenomenon 13.7.1 Afghanistan Online 13.7.2 Somalinet 13.8 Features of Digital Diaspora 13.9 Cognitive Social Capital: The Benefits of Cognitive Social Media 13.10 Conclusion References 14 Data Analytics of Psychological Distress and Coping Among Fresh Migrant from North Eastern Region to Bengaluru City 14.1 Introduction 14.2 Material and Method 14.3 Result and Findings 14.3.1 Socio-Demographic Profile of Migrants 14.3.2 Push and Pull Factors for Migration 14.3.3 Challenges Faced by Migrants 14.3.4 FMNER Expectation from People and Government 14.3.5 Psychological Distress 14.3.6 Coping Style 14.4 Discussion 14.5 Limitations and Implications 14.6 Conclusion References 15 Security and Privacy Challenges for Big Data on Social Media 15.1 Introduction 15.2 Overview 15.2.1 Facebook’s Privacy Model—Exposure, Wreck, Invasion, and Social Convergence 15.2.2 Facebook Privacy Settings: Who Cares? 15.2.3 Location Privacy Protection with Personalized k-Anonymity: Algorithms and Architecture 15.3 Problem Statement 15.4 System Analysis 15.4.1 Existing System 15.5 Proposed System 15.6 Threat Analysis 15.6.1 Damaging Media Awareness in Big Datasets 15.6.2 Service Privacy Analysis 15.6.3 Social Media Meta Data Survey 15.7 Conclusion References 16 Social Media: The Dark Horse of Market in Consumer Decision Journey 16.1 Social Media as a Source of Social Media Big Data 16.1.1 Social Media Models and Behavioral Predictions 16.2 Behavioral Predictions: Marketer’s Guide Through the Consumer Decision Journey 16.3 Co-creating Value Through Social Media Big Data 16.4 Optimum Utilization of Social Media Big Data for Insightful Behavioral Predictions 16.4.1 Identification of the Users 16.4.2 Multi-scale Analysis for Big Data and Social Media 16.4.3 Eliminating the Noise from Big Data and Social Media 16.4.4 Big Data Content Linked with Big Data Context 16.4.5 Multidisciplinary Collaborations for Big Data 16.5 Conclusion References