دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Nilanjan Dey (editor)
سری: Advances in ubiquitous sensing applications for healthcare
ISBN (شابک) : 012818146X, 9780128181461
ناشر: Academic Press
سال نشر: 2019
تعداد صفحات: 298
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Big Data Analytics for Intelligent Healthcare Management به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل داده های بزرگ برای مدیریت هوشمند مراقبت های بهداشتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تجزیه و تحلیل دادههای بزرگ برای مدیریت هوشمند مراقبتهای بهداشتی هم تئوری و کاربرد پلتفرمها و معماریهای سختافزاری، توسعه روشها، تکنیکها و ابزارهای نرمافزاری، برنامههای کاربردی و حاکمیت، و استراتژیهای اتخاذ برای استفاده از داده های بزرگ در مراقبت های بهداشتی و تحقیقات بالینی این کتاب آخرین یافتههای تحقیقاتی را در مورد استفاده از تجزیه و تحلیل دادههای بزرگ با تکنیکهای آماری و یادگیری ماشینی ارائه میکند که مقادیر عظیمی از دادههای مراقبت بهداشتی را در زمان واقعی تجزیه و تحلیل میکند.
Big Data Analytics for Intelligent Healthcare Management covers both the theory and application of hardware platforms and architectures, the development of software methods, techniques and tools, applications and governance, and adoption strategies for the use of big data in healthcare and clinical research. The book provides the latest research findings on the use of big data analytics with statistical and machine learning techniques that analyze huge amounts of real-time healthcare data.
Cover Big Data Analytics for Intelligent Healthcare Management Copyright Contributors Preface Acknowledgments 1 Bio-Inspired Algorithms for Big Data Analytics: A Survey, Taxonomy, and Open Challenges Introduction Dimensions of Data Management Big Data Analytical Model Bio-Inspired Algorithms for Big Data Analytics: A Taxonomy Evolutionary Algorithms Swarm-Based Algorithms Ecological Algorithms Discussions Future Research Directions and Open Challenges Resource Scheduling and Usability Data Processing and Elasticity Resilience and Heterogeneity in Interconnected Clouds Sustainability and Energy-Efficiency Data Security and Privacy Protection IoT-Based Edge Computing and Networking Emerging Research Areas in Bio-Inspired Algorithm-Based Big Data Analytics Container as a Service (CaaS) Serverless Computing as a Service (SCaaS) Blockchain as a Service (BaaS) Software-defined Cloud as a Service (SCaaS) Deep Learning as a Service (DLaaS) Bitcoin as a Service (BiaaS) Quantum Computing as a Service (QCaaS) Summary and Conclusions Acknowledgments References Further Reading 2 Big Data Analytics Challenges and Solutions Introduction Consumable Massive Facts Analytics Allotted Records Mining Algorithms Gadget Failure Facts Aggregation Challenges Statistics Preservation-Demanding Situations Information Integration Challenges Records Analysis Challenges Scale of the Statistics Pattern Interpretation Challenges Arrangements of Challenges User Intervention Method Probabilistic Method Defining and Detecting Anomalies in Human Ecosystems Demanding Situations in Managing Huge Records Massive Facts Equal Large Possibilities Present Answers to Challenges for the Quantity Mission Hadoop Hadoop-distributed file system Hadoop MapReduce Apache spark Grid computing Spark structures Capacity solutions for records-variety trouble Image Mining and Processing With Big Data Potential Answers for Velocity Trouble Transactional databases Statistics representation Massive actualities calculations Ability solutions for privateers and safety undertaking Ability Solutions for Scalability Assignments Big data and cloud computing Cloud computing service models Answers Use record encryption Imposing access controls Logging Discussion Conclusion Glossary References Further Reading 3 Big Data Analytics in Healthcare: A Critical Analysis Introduction Big Data Healthcare Data Structured Data Unstructured Data Semistructured Data Genomic Data Patient Behavior and Sentiment Data Clinical Data and Clinical Notes Clinical Reference and Health Publication Data Administrative and External Data Medical Image Processing and its Role in Healthcare Data Analysis Recent Works in Big Data Analytics in Healthcare Data Architectural Framework and Different Tools for Big Data Analytics in Healthcare Big Data Architectural Framework Different Tools Used in Big Data Analytics in Healthcare Data Challenges Faced During Big Data Analytics in Healthcare Conclusion and Future Research References Further Reading 4 Transfer Learning and Supervised Classifier Based Prediction Model for Breast Cancer Introduction Related Work Dataset and Methodologies Convolution Neural Networks (CNNs/ConvNets) Transfer learning and convolution networks Convolution networks as fixed feature extractors Dimensionality reduction and principle component analysis (PCA) Supervised machine learning Proposed Model Implementation Feature Extraction Dimensionality Reduction Classification Tuning Hyperparameters of the Classifiers Result and Analysis 10-fold Cross Validation Result Magnification Factor Wise Analysis on Validation Accuracy Validation accuracy of 40x Validation accuracy of 100x Validation accuracy of 200x Validation accuracy of 400x Best validation accuracy Performance on the test set Result and Analysis of Test Performance Test performance on 40x Overall performance on 40x Test performance on 100x Overall performance on 100x Test performance on 200x Test performance on 400x Overall performance on 400x Discussion Conclusion References Further Reading 5 Chronic TTH Analysis by EMG and GSR Biofeedback on Various Modes and Various Medical Symptoms Using IoT Introduction and Background Biofeedback Mental Health Introduction Importance of Mental Health, Stress, and Emotional Needs and Significance of Study Meaning of Mental Health Definitions Factors Affecting Mental Health Models of Stress: Three Models in Practice Types of stress Causes of stress Symptoms of stress Big Data and IoT Previous Studies (Literature Review) Tension Type Headache and Stress Independent Variable: Emotional Need Fulfillment Meditation-Effective Spiritual Tool With Approach of Biofeedback EEG Mind-Body and Consciousness Sensor Modalities and Our Approach Biofeedback Based Sensor Modalities Electromyograph Electrodermograph Proposed Framework Experiments and Results-Study Plot Study Design and Source of Data Study Duration and Consent From Subjects Sampling Design and Allocation Process Sample Size Study Population Inclusion criteria Exclusion criteria Intervention Outcome Parameters Primary variables Secondary variables Analgesic Consumption Assessment of Outcome Variables Pain Diary Data Collection Statistical Analysis Hypothesis Data Collection Procedure-Guided Meditation as per Fig. 5.7G Results, Interpretation and Discussion The Trend of Average of Frequency The Trend of Average of Duration The Trend of Average of Intensity The Trend of Duration per Cycle With Time Trend on Correlation of TTH Duration and Intensity Trend on Correlation of TTH Duration With Occurrence The Trend of Average of Frequency The Trend of Average of Duration The Trend of Average of Intensity The Trend of Duration per Cycle With Time Trend on Correlation of TTH Duration and Intensity Trend on Correlation of TTH Duration With Occurrence The Trend of Average of Frequency The Trend of Average Duration The Trend of Average Intensity The Trend of Duration per Cycle With Time Trend on Correlation of TTH Duration and Intensity Trend on Correlation of TTH Duration With Occurrence The Trend of Average of Frequency The Trend of Average of Duration The Trend of Average Intensity The Trend of Duration per Cycle With Time Trend on Correlation of TTH Duration and Intensity Trend on Correlation of TTH Duration With Occurrence Findings in This Chapter Future Scope, Limitations, and Possible Applications Conclusion Comprehensive Conclusion Acknowledgment References Further Reading 6 Multilevel Classification Framework of fMRI Data: A Big Data Approach Introduction Related Work Our Approach Dataset Methodology Result Evaluation Experimental Results Subject-Dependent Experiments on PS+SP All features ROI-based feature Average ROI-based feature N-most active-based feature N-most active ROI-based feature Subject-Dependent Experiment on PS/SP ROI-based feature Average ROI-based feature N-most active-based feature Most active ROI-based feature Result Analysis Summary of the Subject-Dependent Results Subject-Independent Experiment Conclusion and Future Work References Further Reading 7 Smart Healthcare: An Approach for Ubiquitous Healthcare Management Using IoT Introduction Literature Survey Proposed Model Fetch Module Ingest Module Retrieve Module Act/Notify Module Prototype Model of the Proposed Work Implementation of the Proposed System Simulation and Result Discussion Conclusion References 8 Blockchain in Healthcare: Challenges and Solutions Introduction Roadmap Healthcare Big Data and Blockchain Overview Healthcare Big Data Blockchain How Blockchain Works Privacy of Healthcare Big Data Privacy Right by Country and Organization How Blockchain Is Applicable for Healthcare Big Data Digital Trust Intelligent Data Management Smart Ecosystem Digital Supply Chain Cybersecurity Interoperability and Data Sharing Improving Research and Development (R&D) Fighting Counterfeit Drugs Collaborative Patient Engagement Online Access to Longitudinal Data by Patient Off-Chain Data Storage due to Privacy and Data Size Blockchain Challenges and Solutions for Healthcare Big Data GDPR versus Blockchain Problem statement and key factors of GDPR Solutions Off-chain blockchain advantages Off-chain blockchain disadvantages Conclusion and Discussion References Further Reading 9 Intelligence-Based Health Recommendation System Using Big Data Analytics Introduction Background Recommendation System and Its Basic Concepts Phases of Recommendation System Methodology Filtering techniques Collaborative-based filtering recommendation system Evaluation of recommendation system Health Recommendation System Designing the Health Recommendation System Framework for HRS Methods to Design HRS Evaluation of HRS Proposed Intelligent-Based HRS Dataset Description Experimental Result Analysis Advantages and Disadvantages of the Proposed Health Recommendation System Using Big Data Analytics Conclusion and Future Work References Further Reading 10 Computational Biology Approach in Management of Big Data of Healthcare Sector Introduction Application of Big Data Analysis Database Management System and Next Generation Sequencing (NGS) De novo Assembly, Re-Sequencing, Transcriptomics Sequencing and Epigenetics Data Collection, Extraction of Genes, and Screening of Drugs Different Algorithms Related to Docking Molecular Interactions, Scoring Functions, and Discussion of Some Docking Examples Conclusions Acknowledgments References 11 Kidney-Inspired Algorithm and Fuzzy Clustering for Biomedical Data Analysis Introduction Biological Structure of the Kidney Kidney-Inspired Algorithm Literature Survey Proposed Model Fuzzy C-Means Algorithm Proposed KA-Based Approach for Biomedical Data Analysis Obtaining optimal cluster centers using KA Cluster analysis using optimal cluster centers Results Analysis Evaluation Metrics Experimental Results Statistical Validity Conclusion Acknowledgment References Index A B C D E F G H I J K L M N O P Q R S T U V W Y Z Back Cover