دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2020
نویسندگان: Raffaele Teperino (editor)
سری:
ISBN (شابک) : 3030352129, 9783030352127
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 264
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Beyond Our Genes: Pathophysiology of Gene and Environment Interaction and Epigenetic Inheritance به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فراتر از ژن های ما: پاتوفیزیولوژی تعامل ژن و محیط و وراثت اپی ژنتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دوگانگی ژنوتیپ/فنوتیپ به آرامی با یک رابطه پیچیدهتر جایگزین میشود که به موجب آن اکثر فنوتیپها از تعاملات بین ژنوتیپ و محیطی که فرد در آن زندگی میکند ناشی میشود. جالب توجه است، به نظر می رسد که نه تنها زندگی ما، بلکه زندگی اجداد ما نیز تعیین کننده ظاهر ماست.
این شکل جدید وراثت شناخته شده به عنوان () شناخته می شود. epi) ژنتیکی، زیرا شامل یک لایه اطلاعات اضافی در بالای لایه ای است که توسط ژن ها رمزگذاری شده است. کشف آن یکی از بزرگترین تغییرات پارادایم در زیست شناسی در سال های اخیر را تشکیل داده است. درک عوامل اپی ژنتیکی ممکن است به توضیح پاتوژنز چندین بیماری پیچیده انسانی (مانند دیابت، چاقی و سرطان) کمک کند و مسیرهای جایگزینی برای پیشگیری، مدیریت و درمان بیماری ارائه دهد.
این کتاب خواننده را با اهمیت محیط زیست برای سلامت خود و
فرزندانمان آشنا می کند، دانش فعلی در مورد وراثت اپی ژنتیک را
روشن می کند و دریچه ای را به روی پیشرفت های آینده در این
زمینه می گشاید.
The genotype/phenotype dichotomy is being slowly replaced by a more complex relationship whereby the majority of phenotypes arise from interactions between one’s genotype and the environment in which one lives. Interestingly, it seems that not only our lives, but also our ancestors’ lives, determine how we look.
This newly recognized form of inheritance is known as (epi)genetic, as it involves an additional layer of information on top of the one encoded by the genes. Its discovery has constituted one of the biggest paradigm shifts in biology in recent years. Understanding epigenetic factors may help explain the pathogenesis of several complex human diseases (such as diabetes, obesity and cancer) and provide alternative paths for disease prevention, management and therapy.
This book introduces the reader to the importance of
the environment for our own health and the health of our
descendants, sheds light on the current knowledge on
epigenetic inheritance and opens a window to future
developments in the field.
Preface Contents Part I: The Physiology of Gene/Environment Interaction Chapter 1: Food and Nutrition as Prime Environmental Factors 1.1 Diet Quality 1.2 Obesity and Overweight 1.3 Deficiency and Malnutrition 1.4 Interplay With Physical Activity 1.5 Nutrition Across the Life Course 1.6 Nutrition During Pregnancy 1.7 Nutrition From Childhood to Early Adulthood 1.8 Nutrition in Elderly 1.9 Nutrition and Diet as Primary Environmental Factor for Disease Development References Chapter 2: Circadian Rhythms in Health and Disease 2.1 The Mammalian Circadian System 2.1.1 The Circadian Clock 2.1.2 The Mammalian Molecular Clock Machinery 2.1.3 The Circadian Clock Regulates Overall Physiology 2.2 The Circadian Clock in Relation to the Environment 2.2.1 The Circadian System Is in Synchrony with the Environment 2.2.2 Environmental Factors Can Disturb the Circadian Organization 2.3 The Circadian Clock and Diseases 2.3.1 Circadian Regulation of Metabolic Functions 2.3.2 Circadian Control of the Immune Response 2.3.3 The Circadian Clock and Environmental Factors Control Microbiome Fluctuations 2.3.4 Environmental Changes Promote Cancer Through Clock Dysfunction 2.4 Chapter Conclusion References Chapter 3: Environmental Factors’ Interference in Endocrine Aspects of Male Reproduction 3.1 Environmental Factors as Endocrine Disruptors: Sources and Milestones of Endocrine Disruptors’ History 3.2 EDCs as Obesogens 3.3 Endocrine System as Physiological Interface With the Environment: Obesogens Perturbations of Hypothalamic-Pituitary-Gonadal (HPG) Axis 3.4 Effects of Obesogens: Mechanisms of Regulation of Male Reproductive System Physiology 3.4.1 Obesogens and Hormonal Disorders 3.4.2 Obesogens and Testosterone 3.4.3 Obesogens and Leptin 3.4.4 Obesogens and Insulin 3.4.5 Obesogens and Histopathology of the Testis and Sperm Parameters References Chapter 4: Prenatal Exposure to Endocrine Disrupting Chemicals and Their Effect on Health Later in Life 4.1 Endocrine Disrupting Chemicals and Their Effects on the Endocrine System 4.1.1 Rapid Increase of Chemical Exposure During the Last Decades 4.1.2 What is an EDC? 4.1.3 We Are Exposed to EDCs Throughout Our Life 4.1.4 Fetuses are More Vulnerable to EDCs Than Adults 4.1.5 Endocrine Systems Affected by EDCs 4.2 The Effect of EDCs on Epigenetics as a Possible Explanation for Their Life Long Effects 4.2.1 EDC Exposure During Fetal Development Alters DNA Methylation 4.2.2 Transgenerational Effects 4.3 Rapid Increase of Chronic Common Diseases – A Possible Connection to Prenatal EDC Exposure? 4.4 Fertility Problems 4.4.1 Introduction 4.4.2 Associations Between Prenatal EDC Exposure and Fertility Problems in Adulthood 4.4.3 Endocrine Disrupting Properties & EDC-Induced DNA Methylation Associated With Reproductive Capacity 4.5 Neurodevelopmental Disorders 4.5.1 Introduction 4.5.2 Associations Between Prenatal EDC Exposure and Neurodevelopmental Health Outcomes 4.5.3 Endocrine Disrupting Properties & EDC-Induced DNA Methylation Associated With Neurodevelopment 4.6 Metabolic Disorders 4.6.1 Introduction: Obesity and Diabetes 4.6.2 Associations Between Prenatal EDC Exposure and the Metabolic Disorders Obesity and Diabetes 4.6.3 Endocrine Disrupting Properties & EDC-Induced DNA Methylation Associated With Metabolic Disorders 4.7 Conclusion References Part II: Gene-Environment Interaction and Disease Susceptibility Chapter 5: Gene-Environment Interaction and Individual Susceptibility to Metabolic Disorders 5.1 Introduction 5.2 Genetic Susceptibility to Obesity and T2D 5.3 The Relationship Between Genetic and Environmental Factors in Obesity and T2D 5.4 Genetics of Obesity 5.5 Genetics of Body Fat Distribution 5.6 Genetics of Type 2 Diabetes 5.7 Gene Environment Interaction 5.8 Gene Environment Interaction in Obesity 5.8.1 Obesogenic Environment 5.8.2 Diet 5.8.3 Physical Activity 5.8.4 Effects of Combined Life-Style Modifications in Relation to Genetic Risk 5.8.5 Smoking 5.8.6 Sleep 5.9 Gene Environment Interaction and T2D 5.9.1 Diet 5.9.2 Physical Activity 5.10 Limitations 5.11 Conclusions References Chapter 6: Gene-Environment Interaction and Cancer 6.1 Cancer as Epigenetic Disease 6.2 Environmental Hits on Cancer Progression 6.2.1 Nutrition and Metabolism 6.2.2 Endocrine Disruptors 6.2.3 Circadian Rhythm 6.3 Conclusions References Chapter 7: The Role of Gene-Environment Interaction in Mental Health and Susceptibility to the Development of Psychiatric Disorders 7.1 Introduction: Gene-Environment Interactions (GxE) and Psychiatric Disorders 7.2 Review of Gene-Environment Interaction Research in Psychiatric Disorders 7.2.1 Candidate GxE Research 7.2.2 Genome-Wide GxE Research 7.3 Critical Evaluation of GxE Research in Psychiatric Disorders 7.3.1 Theoretical Models of Gene-Environment Interaction 7.3.2 Methodological Limitations of Candidate and Genome-Wide GxE Studies 7.3.3 Gene-Environment Correlations 7.3.4 GxE From a Life Course Perspective 7.3.5 Specificity of GxE Effects in Predicting Psychiatric Disorders 7.4 Future Directions 7.4.1 Intermediate Phenotypes 7.4.2 Experimental Studies 7.4.3 Alternative Theoretical Models of Gene-Environment Interaction 7.5 Conclusion References Chapter 8: Gene/Environment Interaction and Autoimmune Disease 8.1 Introduction 8.1.1 What Are Autoimmune Diseases 8.1.2 Genetic Factors Associated with Autoimmune Diseases 8.1.3 Environmental Factors Associated with Autoimmune Diseases 8.1.4 The Microbiome 8.2 Gene/Environment Interaction and Autoimmune Disease 8.2.1 Inflammatory Bowel Diseases 8.2.2 Gene-Cigarette Smoke Interaction in IBD 8.2.3 Gene-Microbe Interaction in IBD 8.2.4 Psoriasis 8.2.5 Genetics 8.2.6 Environment 8.2.6.1 Ultra-violet light 8.2.6.2 Smoking 8.2.6.3 Infection and the Microbiome 8.2.7 Rheumatoid Arthritis 8.2.8 Environment 8.2.8.1 Smoking 8.2.8.2 Infection and the Microbiome References Part III: Genome/Epigenome Chapter 9: Introduction to Epigenetic Inheritance: Definition, Mechanisms, Implications and Relevance 9.1 Introduction to the Concept of Epigenetic Inheritance 9.2 Developmental Windows of Susceptibility 9.3 Overview of the Mechanisms of Epigenetic Inheritance in Mammals 9.3.1 DNA Methylation and Genomic Imprinting 9.3.2 Histone Post-Translational Modifications 9.3.3 Small Non-coding RNAs 9.4 The Relevance of Epigenetic Inheritance to Phenotypic Adaptation and Disease Risk 9.5 Conclusion References Chapter 10: The (not so) Controversial Role of DNA Methylation in Epigenetic Inheritance Across Generations 10.1 Methylation of Cytosine Represses Gene Expression in Mammals 10.2 Epigenetic Inheritance – It All Began in Plants … 10.3 Detection of DNA Methylation: Current and Coming Technologies 10.4 Reprogramming the Early Mammalian Embryo 10.4.1 Hit Me Once: Reprogramming the Pre-implantation Embryo 10.4.2 Hit Me Twice: Reprogramming from Primordial Germ Cells to Gonocytes 10.5 Inter- and Transgenerational Epigenetic Inheritance in Mammals 10.5.1 Metabolic Health and Epigenetic Inheritance 10.5.2 Anxiety and Epigenetic Inheritance 10.5.3 Cognitive Plasticity and Epigenetic Inheritance 10.5.4 Hepatic Wound Healing and Epigenetic Inheritance 10.5.5 Parental Imprinting: Making Male and Female Gametes Compatible for Embryogenesis 10.5.6 The Showcase Examples for DNA Methylation Associated Epigenetic Inheritance: The Agouti and Axin Epialleles 10.5.7 Epimutations That Are Not Primary Epimutations: Methylation as Secondary Mode of Action 10.6 Conclusion References Chapter 11: Small Non-Coding RNAs and Epigenetic Inheritance 11.1 Introduction 11.2 Gametogenesis 11.3 Spermatozoal RNAs 11.3.1 Long RNAs 11.3.2 Small Non-Coding RNAs 11.4 Origin of Sperm RNAs 11.4.1 Testis-Derived RNAs 11.4.2 Epididymal Contribution to Sperm RNA Profile 11.5 Epigenetic Inheritance of Acquired Traits and Disorders Via Sperm RNAs 11.5.1 Metabolic Disorders 11.5.2 Traumatic Stress and Psychiatric Disorders 11.6 How Inherited RNAs Can Affect the Development and Health of Offspring? 11.7 Future Perspectives References Chapter 12: Future Perspectives in Epigenetic Inheritance 12.1 Introduction 12.2 Current Mechanistic Insights on Epigenetic Inheritance 12.2.1 Paramutation and Epialleles 12.2.2 DNA Methylation 12.2.3 Small RNA 12.2.4 Chromatin Structure 12.3 Prospective Mechanisms 12.3.1 Microbiome 12.3.2 RNA Mediated Soma to Germ-Line Information Transfer 12.3.3 Non-canonical Base Modifications 12.3.4 Prions and Structural Inheritance 12.3.5 Cellular Signaling and Feedback Loops 12.4 Implications on Health and Well-being 12.4.1 Environmental Health and Protection 12.4.2 Pharmacovigilance 12.4.3 ART and Preconception Care 12.5 Outstanding Questions Glossary References Index