دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Peter E. Rossi, Greg M. Allenby, Sanjog Misra سری: WILEY SERIES IN PROBABILITY AND STATISTICS ISBN (شابک) : 9781394219117, 9781394219124 ناشر: Wiley سال نشر: 2024 تعداد صفحات: [402] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Bayesian Statistics and Marketing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار و بازاریابی بیزی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تحقیقات بازاریابی خود را با این ابزارآماری پیشرفته تنظیم کنید. تجزیه و تحلیل دادههای خانوار و مصرفکننده، پیشبینی عملکرد محصول، و کمپینهای هدفیابی سفارشی تنها چند مورد از حوزههایی هستند که رویکردهای بیزی در آنها نتایج انقلابی را نوید میدهند. این کتاب یک نمای کلی جامع و قابل دسترس از این موضوع برای هر محقق یا متخصص بازاریابی آگاه از نظر آماری ارائه می دهد. اقتصاددانان و سایر دانشمندان علوم اجتماعی، درمان جامع بسیاری از روشهای بیزی را پیدا میکنند که به طور کلی برای مشکلات علوم اجتماعی محور هستند. این شامل یک رویکرد عملی برای مسائل چالش برانگیز محاسباتی در مدلهای ضریب تصادفی، ناپارامتریکها و مشکلات درونزایی است. خوانندگان ویرایش دوم آمار و بازاریابی بیزی همچنین متوجه خواهند شد: بحث در مورد روش های بیزی در تجزیه و تحلیل متن و به روز رسانی های یادگیری ماشین در سراسر منعکس کننده آخرین تحقیقات و برنامه های کاربردی بحث در مورد نرم افزار آماری مدرن، از جمله مقدمه ای بر بسته R bayesm، که همه را پیاده سازی می کند. مدلهایی که در اینجا گنجانده شدهاند مطالعات موردی گسترده در سراسر جهان برای پیوند تئوری و عمل آمار و بازاریابی بیزی برای دانشجویان و محققان پیشرفته در بخشهای بازاریابی، تجارت، و اقتصاد، و همچنین برای هر متخصص بازاریابی که از نظر آماری باهوش است، ایدهآل است.
Fine-tune your marketing research with this cutting-edge statistical toolkit Bayesian Statistics and Marketing illustrates the potential for applying a Bayesian approach to some of the most challenging and important problems in marketing. Analyzing household and consumer data, predicting product performance, and custom-targeting campaigns are only a few of the areas in which Bayesian approaches promise revolutionary results. This book provides a comprehensive, accessible overview of this subject essential for any statistically informed marketing researcher or practitioner. Economists and other social scientists will find a comprehensive treatment of many Bayesian methods that are central to the problems in social science more generally. This includes a practical approach to computationally challenging problems in random coefficient models, non-parametrics, and the problems of endogeneity. Readers of the second edition of Bayesian Statistics and Marketing will also find: Discussion of Bayesian methods in text analysis and Machine Learning Updates throughout reflecting the latest research and applications Discussion of modern statistical software, including an introduction to the R package bayesm, which implements all models incorporated here Extensive case studies throughout to link theory and practice Bayesian Statistics and Marketing is ideal for advanced students and researchers in marketing, business, and economics departments, as well as for any statistically savvy marketing practitioner.
Cover Title Page Copyright Contents Chapter 1 Introduction 1.1 A Basic Paradigm for Marketing Problems 1.2 A Simple Example 1.3 Benefits and Costs of the Bayesian Approach 1.4 An Overview of Methodological Material and Case Studies 1.5 Approximate Bayes Methods and This Book 1.6 Computing and This Book Acknowledgments Chapter 2 Bayesian Essentials 2.1 Essential Concepts from Distribution Theory 2.2 The Goal of Inference and Bayes Theorem 2.2.1 Bayes Theorem 2.3 Conditioning and the Likelihood Principle 2.4 Prediction and Bayes 2.5 Summarizing the Posterior 2.6 Decision Theory, Risk, and the Sampling Properties of Bayes Estimators 2.7 Identification and Bayesian Inference 2.8 Conjugacy, Sufficiency, and Exponential Families 2.9 Regression and Multivariate Analysis Examples 2.9.1 Multiple Regression 2.9.2 Assessing Priors for Regression Models 2.9.3 Bayesian Inference for Covariance Matrices 2.9.4 Priors and the Wishart Distribution 2.9.5 Multivariate Regression 2.9.6 The Limitations of Conjugate Priors 2.10 Integration and Asymptotic Methods 2.11 Importance Sampling 2.11.1 GHK Method for Evaluation of Certain Integrals of MVN 2.12 Simulation Primer for Bayesian Problems 2.12.1 Uniform, Normal, and Gamma Generation 2.12.2 Truncated Distributions 2.12.3 Multivariate Normal and Student t Distributions 2.12.4 The Wishart and Inverted Wishart Distributions 2.12.5 Multinomial Distributions 2.12.6 Dirichlet Distribution 2.13 Simulation from Posterior of Multivariate Regression Model Chapter 3 MCMC Methods 3.1 MCMC Methods 3.2 A Simple Example: Bivariate Normal Gibbs Sampler 3.3 Some Markov Chain Theory 3.4 Gibbs Sampler 3.5 Gibbs Sampler for the SUR Regression Model 3.6 Conditional Distributions and Directed Graphs 3.7 Hierarchical Linear Models 3.8 Data Augmentation and a Probit Example 3.9 Mixtures of Normals 3.9.1 Identification in Normal Mixtures 3.9.2 Performance of the Unconstrained Gibbs Sampler 3.10 Metropolis Algorithms 3.10.1 Independence Metropolis Chains 3.10.2 Random Walk Metropolis Chains 3.10.3 Scaling of the Random Walk Metropolis 3.11 Metropolis Algorithms Illustrated with the Multinomial Logit Model 3.12 Hybrid MCMC Methods 3.13 Diagnostics Chapter 4 Unit‐Level Models and Discrete Demand 4.1 Latent Variable Models 4.2 Multinomial Probit Model 4.2.1 Understanding the Autocorrelation Properties of the MNP Gibbs Sampler 4.2.2 The Likelihood for the MNP Model 4.3 Multivariate Probit Model 4.4 Demand Theory and Models Involving Discrete Choice 4.4.1 A Nonhomothetic Choice Model 4.4.2 Demand for Discrete Quantities 4.4.3 Demand for Variety Chapter 5 Hierarchical Models for Heterogeneous Units 5.1 Heterogeneity and Priors 5.2 Hierarchical Models 5.3 Inference for Hierarchical Models 5.4 A Hierarchical Multinomial Logit Example 5.5 Using Mixtures of Normals 5.5.1 A Hybrid Sampler 5.5.2 Identification of the Number of Mixture Components 5.5.3 Application to Hierarchical Models 5.6 Further Elaborations of the Normal Model of Heterogeneity 5.7 Diagnostic Checks of the First Stage Prior 5.8 Findings and Influence on Marketing Practice Chapter 6 Model Choice and Decision Theory 6.1 Model Selection 6.2 Bayes Factors in the Conjugate Setting 6.3 Asymptotic Methods for Computing Bayes Factors 6.4 Computing Bayes Factors Using Importance Sampling 6.5 Bayes Factors Using MCMC Draws from the Posterior 6.6 Bridge Sampling Methods 6.7 Posterior Model Probabilities with Unidentified Parameters 6.8 Chib's Method 6.9 An Example of Bayes Factor Computation: Diagonal MNP models 6.10 Marketing Decisions and Bayesian Decision Theory 6.10.1 Plug‐In vs Full Bayes Approaches 6.10.2 Use of Alternative Information Sets 6.10.3 Valuation of Disaggregate Information 6.11 An Example of Bayesian Decision Theory: Valuing Household Purchase Information Chapter 7 Simultaneity 7.1 A Bayesian Approach to Instrumental Variables 7.2 Structural Models and Endogeneity/Simultaneity 7.2.1 Demand Model 7.2.2 Supply Model – Profit Maximizing Prices 7.2.3 Bayesian Estimation 7.3 Non‐Random Marketing Mix Variables 7.3.1 A General Framework 7.3.2 An Application to Detailing Allocation 7.3.3 Conditional Modeling Approach 7.3.4 Beyond the Conditional Model Chapter 8 A Bayesian Perspective on Machine Learning 8.1 Introduction 8.2 Regularization 8.2.1 The LASSO and Bayes 8.2.2 Discussion: Informative Regularizers 8.2.3 Bayesian Inference 8.3 Bagging 8.3.1 Bagging for Regression 8.3.2 Bagging, Bayesian Model Averaging and Ensembles 8.4 Boosting 8.4.1 Boosting as Bayes 8.5 Deep Learning 8.5.1 A Primer on Deep Learning 8.5.2 Bayes and Deep Learning 8.6 Applications 8.6.1 Bayes/ML for Flexible Heterogeneity 8.6.2 The Need for ML 8.6.3 Discussion Chapter 9 Bayesian Analysis for Text Data 9.1 Introduction 9.2 Consumer Demand 9.2.1 The Latent Dirichlet Allocation (LDA) Model 9.2.2 Full Gibbs Sampler 9.2.3 Processing Text Data for Analysis 9.2.4 Collapsed Gibbs Sampler 9.2.5 The Sentence Constrained LDA Model 9.2.6 Conjunctions and Punctuation 9.3 Integrated Models 9.3.1 Text and Conjoint Data 9.3.2 R Code for Text and Conjoint Data 9.3.3 Text and Product Ratings 9.3.4 Text and Scaled Response Data 9.4 Discussion Chapter 10 Case Study 1: Analysis of Choice‐Based Conjoint Data Using A Hierarchical Logit Model 10.1 Choice‐Based Conjoint 10.2 A Random Coefficient Logit 10.3 Sign Constraints and Priors 10.4 The Camera Data 10.4.1 Panel Data in bayesm 10.5 Running the Model 10.6 Describing the Draws of Respondent Partworths 10.7 Predictive Posteriors 10.7.1 Respondent‐Level Parthworth Inferences 10.7.2 Posterior Predictive Distributions 10.8 COMPARISON OF STAN AND SAWTOOTH SOFTWARE TO BAYESM ROUTINES 10.8.1 Comparison to STAN 10.8.2 Comparison with Sawtooth Software Chapter 11 Case Study 2: WTP and Equilibrium Analysis with Conjoint Demand 11.1 The Demand for Product Features 11.1.1 The Standard Choice Model for Differentiated Product Demand 11.1.2 Estimating Demand 11.2 Conjoint Surveys and Demand Estimation 11.2.1 Conjoint Design 11.3 WTP Properly Defined 11.3.1 Pseudo‐WTP 11.3.2 Pseudo WTP for Heterogenous Consumers 11.3.3 True WTP 11.3.4 Problems with All WTP Measures 11.4 Nash Equilibrium Prices – Computation and Assumptions 11.4.1 Assumptions 11.4.2 A Standard Logit Model for Demand 11.4.3 Computing Equilibrium Prices 11.5 Camera Example 11.5.1 WTP Computations 11.5.2 Equilibrium Price Calculations 11.5.3 Lessons for Conjoint Design from WTP and Equilibrium Price Computations Chapter 12 Case Study 3: Scale Usage Heterogeneity 12.1 Background 12.2 Model 12.3 Priors and MCMC Algorithm 12.4 Data 12.4.1 Scale Usage Heterogeneity 12.4.2 Correlation Analysis 12.5 Discussion 12.6 R Implementation Chapter 13 Case Study 4: Volumetric Conjoint 13.1 Introduction 13.2 Model Development 13.3 Estimation 13.4 Empirical Analysis 13.4.1 Ice Cream 13.4.2 Frozen Pizza 13.5 Discussion 13.6 Using the Code 13.7 Concluding Remarks Chapter 14 Case Study 5: Approximate Bayes and Personalized Pricing 14.1 Heterogeneity and Heterogeneous Treatment Effects 14.2 The Framework 14.2.1 Introducing the ML Element 14.3 Context and Data 14.4 Does the Bayesian Bootstrap Work? 14.5 A Bayesian Bootstrap Procedure for the HTE Logit 14.5.1 The Estimator 14.5.2 Results 14.6 Personalized Pricing A An Introduction to R and bayesm A.1 SETTING UP THE R ENVIRONMENT AND BAYESM A.1.1 Obtaining R A.1.2 Getting Started in RStudio A.1.3 Obtaining Help in RStudio A.1.4 Installing bayesm A.2 The R Language A.2.1 Using Built‐In Functions: Running a Regression A.2.2 Inspecting Objects and the R Workspace A.2.3 Vectors, Matrices, and Lists A.2.4 Accessing Elements and Subsetting Vectors, Arrays, and Lists A.2.5 Loops A.2.6 Implicit Loops A.2.7 Matrix Operations A.2.8 Other Useful Built‐In R Functions A.2.9 User‐defined Functions A.2.10 Debugging Functions A.2.11 Elementary Graphics A.2.12 System Information A.2.13 More Lessons Learned from Timing A.3 USING BAYESM A.4 OBTAINING HELP WITH BAYESM A.5 Tips on Using MCMC Methods A.6 Extending and Adapting Our Code References Index EULA